L(s) = 1 | + (−0.809 − 0.587i)3-s − 7-s + (0.309 + 0.951i)9-s + (−0.309 + 0.951i)11-s + (0.309 + 0.951i)13-s + (0.809 − 0.587i)17-s + (0.809 − 0.587i)19-s + (0.809 + 0.587i)21-s + (−0.309 + 0.951i)23-s + (0.309 − 0.951i)27-s + (0.809 + 0.587i)29-s + (−0.809 + 0.587i)31-s + (0.809 − 0.587i)33-s + (0.309 + 0.951i)37-s + (0.309 − 0.951i)39-s + ⋯ |
L(s) = 1 | + (−0.809 − 0.587i)3-s − 7-s + (0.309 + 0.951i)9-s + (−0.309 + 0.951i)11-s + (0.309 + 0.951i)13-s + (0.809 − 0.587i)17-s + (0.809 − 0.587i)19-s + (0.809 + 0.587i)21-s + (−0.309 + 0.951i)23-s + (0.309 − 0.951i)27-s + (0.809 + 0.587i)29-s + (−0.809 + 0.587i)31-s + (0.809 − 0.587i)33-s + (0.309 + 0.951i)37-s + (0.309 − 0.951i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.728 + 0.684i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.728 + 0.684i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6584581100 + 0.2607020083i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6584581100 + 0.2607020083i\) |
\(L(1)\) |
\(\approx\) |
\(0.7449014455 + 0.03663100543i\) |
\(L(1)\) |
\(\approx\) |
\(0.7449014455 + 0.03663100543i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + (-0.309 + 0.951i)T \) |
| 13 | \( 1 + (0.309 + 0.951i)T \) |
| 17 | \( 1 + (0.809 - 0.587i)T \) |
| 19 | \( 1 + (0.809 - 0.587i)T \) |
| 23 | \( 1 + (-0.309 + 0.951i)T \) |
| 29 | \( 1 + (0.809 + 0.587i)T \) |
| 31 | \( 1 + (-0.809 + 0.587i)T \) |
| 37 | \( 1 + (0.309 + 0.951i)T \) |
| 41 | \( 1 + (0.309 + 0.951i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (0.809 + 0.587i)T \) |
| 53 | \( 1 + (-0.809 - 0.587i)T \) |
| 59 | \( 1 + (-0.309 - 0.951i)T \) |
| 61 | \( 1 + (-0.309 + 0.951i)T \) |
| 67 | \( 1 + (-0.809 + 0.587i)T \) |
| 71 | \( 1 + (-0.809 - 0.587i)T \) |
| 73 | \( 1 + (-0.309 + 0.951i)T \) |
| 79 | \( 1 + (-0.809 - 0.587i)T \) |
| 83 | \( 1 + (-0.809 + 0.587i)T \) |
| 89 | \( 1 + (0.309 - 0.951i)T \) |
| 97 | \( 1 + (0.809 + 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.819568329008114967322619521156, −26.04692169460539189179596716900, −24.90356153620592605387161982459, −23.74517139200526056452814740814, −22.85151353513186660037285593691, −22.21497803347987698254416850154, −21.221437967370332388828054738074, −20.280940293876777121239029353, −19.008895619532592619248525693259, −18.162742152717915667640739487924, −16.94725633167743130823456461472, −16.19258959086644361818143893320, −15.512955731890227315372443188581, −14.177728249678675502660918665826, −12.8734437671155039288789822882, −12.10773892986158363146096015517, −10.75558308458806596191268034188, −10.16693755988193574719605558141, −9.004093982703361799425873546049, −7.62875573310348619629975840891, −6.04754974585284364812676138723, −5.6697558423319968298568260335, −3.99307584527972927002000336918, −3.04328299018363114386013302345, −0.668666800054030249355587573933,
1.37562245064530140316742206219, 2.9405365599738725500207808725, 4.5803563197466120454355416724, 5.73284235859334558369929505025, 6.84581643776585274304993053165, 7.54877429531894697963579163712, 9.278524311103784235748572461546, 10.16671378867593656571000815042, 11.46230024336651007471289236097, 12.28940954659417670253247095291, 13.1858863647229139131505076754, 14.16004583308691683113357116985, 15.80360335550142519434745632140, 16.33809395326307264930350937806, 17.51273932680450656812465034506, 18.36067852937815920880330014968, 19.233244658637582352757247917779, 20.20784066527287104956499163471, 21.57368733199810978424091458414, 22.43895689493626941070174971712, 23.31189683204142296372102896376, 23.90242930364684375756204169785, 25.2843897567042795439285625248, 25.79231359244312646289418707220, 27.13191548863017571497407140628