L(s) = 1 | + (−0.587 + 0.809i)3-s − i·7-s + (−0.309 − 0.951i)9-s + (0.309 − 0.951i)11-s + (−0.951 + 0.309i)13-s + (−0.587 − 0.809i)17-s + (0.809 − 0.587i)19-s + (0.809 + 0.587i)21-s + (0.951 + 0.309i)23-s + (0.951 + 0.309i)27-s + (−0.809 − 0.587i)29-s + (0.809 − 0.587i)31-s + (0.587 + 0.809i)33-s + (0.951 − 0.309i)37-s + (0.309 − 0.951i)39-s + ⋯ |
L(s) = 1 | + (−0.587 + 0.809i)3-s − i·7-s + (−0.309 − 0.951i)9-s + (0.309 − 0.951i)11-s + (−0.951 + 0.309i)13-s + (−0.587 − 0.809i)17-s + (0.809 − 0.587i)19-s + (0.809 + 0.587i)21-s + (0.951 + 0.309i)23-s + (0.951 + 0.309i)27-s + (−0.809 − 0.587i)29-s + (0.809 − 0.587i)31-s + (0.587 + 0.809i)33-s + (0.951 − 0.309i)37-s + (0.309 − 0.951i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.684 - 0.728i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.684 - 0.728i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7494990598 - 0.3243372055i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7494990598 - 0.3243372055i\) |
\(L(1)\) |
\(\approx\) |
\(0.8304687260 - 0.05743465635i\) |
\(L(1)\) |
\(\approx\) |
\(0.8304687260 - 0.05743465635i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-0.587 + 0.809i)T \) |
| 7 | \( 1 - iT \) |
| 11 | \( 1 + (0.309 - 0.951i)T \) |
| 13 | \( 1 + (-0.951 + 0.309i)T \) |
| 17 | \( 1 + (-0.587 - 0.809i)T \) |
| 19 | \( 1 + (0.809 - 0.587i)T \) |
| 23 | \( 1 + (0.951 + 0.309i)T \) |
| 29 | \( 1 + (-0.809 - 0.587i)T \) |
| 31 | \( 1 + (0.809 - 0.587i)T \) |
| 37 | \( 1 + (0.951 - 0.309i)T \) |
| 41 | \( 1 + (0.309 + 0.951i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (-0.587 + 0.809i)T \) |
| 53 | \( 1 + (0.587 - 0.809i)T \) |
| 59 | \( 1 + (-0.309 - 0.951i)T \) |
| 61 | \( 1 + (-0.309 + 0.951i)T \) |
| 67 | \( 1 + (-0.587 - 0.809i)T \) |
| 71 | \( 1 + (0.809 + 0.587i)T \) |
| 73 | \( 1 + (-0.951 - 0.309i)T \) |
| 79 | \( 1 + (-0.809 - 0.587i)T \) |
| 83 | \( 1 + (0.587 + 0.809i)T \) |
| 89 | \( 1 + (-0.309 + 0.951i)T \) |
| 97 | \( 1 + (0.587 - 0.809i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.220753979245981813624124957183, −25.86947565462636305029648735202, −24.79356563396706024480838298355, −24.504484297599097546783600395652, −23.13245844161621521497110594598, −22.429793971995722475995796820308, −21.60318486494653518063936667084, −20.1589787287478950250124291358, −19.28077882439917848992380892609, −18.31335754843015045024538776094, −17.56144414896297970029363177573, −16.65338319274024167295953434091, −15.32148952885278189258944612009, −14.481152781961091831652415114204, −13.00115413750133161410627481738, −12.36101168603037293187498118467, −11.54539423657381225593249160949, −10.26278505597679500183634368067, −9.02271866689015038873717254629, −7.78357263155248175133889126777, −6.797536899328404393123585512978, −5.68839262501768797180832832204, −4.70496030233045628749839575609, −2.73228611678974902283581031659, −1.597147006499628074525741942721,
0.70751026559172448316068740264, 2.980425301631732533537491786115, 4.20866057971495749200689386749, 5.13025346000769720643410861394, 6.45119287315562127665108592309, 7.518688935377878261610904424650, 9.141419169909876477444601542895, 9.87610290403246612855779242831, 11.14511858991378970304063186473, 11.60342948753042657295983336959, 13.20535193655885946098793175189, 14.17197981948480795442401370237, 15.26611026332142210721941145644, 16.370522956943999830993579764628, 16.97127888670888521277495771374, 17.88179166315855743351899053760, 19.28454650537807388243891505326, 20.23702843946161169934120029223, 21.15825871007768280687653485886, 22.14212870494611552212872407264, 22.81759496673155289037827148339, 23.90729170720960452209067281919, 24.69637075171613885630720629988, 26.31863692532461111183515286323, 26.78966059438783086385612382274