Properties

Label 1-200-200.3-r0-0-0
Degree 11
Conductor 200200
Sign 0.535+0.844i-0.535 + 0.844i
Analytic cond. 0.9287960.928796
Root an. cond. 0.9287960.928796
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.951 + 0.309i)3-s i·7-s + (0.809 − 0.587i)9-s + (−0.809 − 0.587i)11-s + (0.587 + 0.809i)13-s + (−0.951 − 0.309i)17-s + (−0.309 + 0.951i)19-s + (−0.309 − 0.951i)21-s + (−0.587 + 0.809i)23-s + (−0.587 + 0.809i)27-s + (0.309 + 0.951i)29-s + (−0.309 + 0.951i)31-s + (0.951 + 0.309i)33-s + (−0.587 − 0.809i)37-s + (−0.809 − 0.587i)39-s + ⋯
L(s)  = 1  + (−0.951 + 0.309i)3-s i·7-s + (0.809 − 0.587i)9-s + (−0.809 − 0.587i)11-s + (0.587 + 0.809i)13-s + (−0.951 − 0.309i)17-s + (−0.309 + 0.951i)19-s + (−0.309 − 0.951i)21-s + (−0.587 + 0.809i)23-s + (−0.587 + 0.809i)27-s + (0.309 + 0.951i)29-s + (−0.309 + 0.951i)31-s + (0.951 + 0.309i)33-s + (−0.587 − 0.809i)37-s + (−0.809 − 0.587i)39-s + ⋯

Functional equation

Λ(s)=(200s/2ΓR(s)L(s)=((0.535+0.844i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.535 + 0.844i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(200s/2ΓR(s)L(s)=((0.535+0.844i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.535 + 0.844i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 200200    =    23522^{3} \cdot 5^{2}
Sign: 0.535+0.844i-0.535 + 0.844i
Analytic conductor: 0.9287960.928796
Root analytic conductor: 0.9287960.928796
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ200(3,)\chi_{200} (3, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 200, (0: ), 0.535+0.844i)(1,\ 200,\ (0:\ ),\ -0.535 + 0.844i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.2736371921+0.4977442046i0.2736371921 + 0.4977442046i
L(12)L(\frac12) \approx 0.2736371921+0.4977442046i0.2736371921 + 0.4977442046i
L(1)L(1) \approx 0.6348273731+0.2427883576i0.6348273731 + 0.2427883576i
L(1)L(1) \approx 0.6348273731+0.2427883576i0.6348273731 + 0.2427883576i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
good3 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
7 1iT 1 - iT
11 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
13 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
17 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
19 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
23 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
29 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
31 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
37 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
41 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
43 1+iT 1 + iT
47 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
53 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
59 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
61 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
67 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
71 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
73 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
79 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
83 1+(0.951+0.309i)T 1 + (0.951 + 0.309i)T
89 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
97 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−26.57761830965674449661441370819, −25.74369359865218948348348489465, −24.37913913773818130215215966317, −23.70509100498744900591390220544, −22.87121290779899380166009628323, −22.12754015394932319348922666802, −20.80816661388769053122250856843, −20.00332288235995144500754714064, −18.73853893207091299041504880736, −17.7405242142036787571914343579, −17.20284323095417001067093471076, −16.013596864777135202681543039, −15.18542306842532422590527125118, −13.42916856746294803756199608610, −13.08505048788713214039461574377, −11.74766324002514017239157462626, −10.66148189270874733899276812532, −10.15095431897031323610037113129, −8.33608436952742948545425502941, −7.24862552425086871583039428779, −6.34447372264862091572902872936, −5.05949758211529482372644394839, −4.05983410113788513272787845507, −2.17897379614529462617909654840, −0.48108368046527431566392026400, 1.78874638294315146385941756382, 3.48174431867222170946660562005, 4.893190964887223781508693277259, 5.803503988798860704150504073570, 6.74192696673321391780177836973, 8.3386215869800799182853315356, 9.36944738862950554579174417906, 10.603610416977542054993547511746, 11.460827543398259143184464612338, 12.34297709694154324886976961850, 13.43307794286949793219184981211, 14.80788992279846331046319307130, 16.01294580490254474812171517052, 16.27798990029838089765233598344, 17.879604653838630871607178078770, 18.31408714582767145100586525576, 19.42552065449808579392271934040, 21.025809971481356982169750566110, 21.512704934878231056255558880944, 22.42837521574886261922992895953, 23.48311238578441950553402236349, 24.1752712910537416998026975948, 25.31684479177583466617918906003, 26.42989172226968078956894030457, 27.3285530271797878155946541393

Graph of the ZZ-function along the critical line