L(s) = 1 | + (−0.951 + 0.309i)3-s − i·7-s + (0.809 − 0.587i)9-s + (−0.809 − 0.587i)11-s + (0.587 + 0.809i)13-s + (−0.951 − 0.309i)17-s + (−0.309 + 0.951i)19-s + (−0.309 − 0.951i)21-s + (−0.587 + 0.809i)23-s + (−0.587 + 0.809i)27-s + (0.309 + 0.951i)29-s + (−0.309 + 0.951i)31-s + (0.951 + 0.309i)33-s + (−0.587 − 0.809i)37-s + (−0.809 − 0.587i)39-s + ⋯ |
L(s) = 1 | + (−0.951 + 0.309i)3-s − i·7-s + (0.809 − 0.587i)9-s + (−0.809 − 0.587i)11-s + (0.587 + 0.809i)13-s + (−0.951 − 0.309i)17-s + (−0.309 + 0.951i)19-s + (−0.309 − 0.951i)21-s + (−0.587 + 0.809i)23-s + (−0.587 + 0.809i)27-s + (0.309 + 0.951i)29-s + (−0.309 + 0.951i)31-s + (0.951 + 0.309i)33-s + (−0.587 − 0.809i)37-s + (−0.809 − 0.587i)39-s + ⋯ |
Λ(s)=(=(200s/2ΓR(s)L(s)(−0.535+0.844i)Λ(1−s)
Λ(s)=(=(200s/2ΓR(s)L(s)(−0.535+0.844i)Λ(1−s)
Degree: |
1 |
Conductor: |
200
= 23⋅52
|
Sign: |
−0.535+0.844i
|
Analytic conductor: |
0.928796 |
Root analytic conductor: |
0.928796 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ200(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 200, (0: ), −0.535+0.844i)
|
Particular Values
L(21) |
≈ |
0.2736371921+0.4977442046i |
L(21) |
≈ |
0.2736371921+0.4977442046i |
L(1) |
≈ |
0.6348273731+0.2427883576i |
L(1) |
≈ |
0.6348273731+0.2427883576i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(−0.951+0.309i)T |
| 7 | 1−iT |
| 11 | 1+(−0.809−0.587i)T |
| 13 | 1+(0.587+0.809i)T |
| 17 | 1+(−0.951−0.309i)T |
| 19 | 1+(−0.309+0.951i)T |
| 23 | 1+(−0.587+0.809i)T |
| 29 | 1+(0.309+0.951i)T |
| 31 | 1+(−0.309+0.951i)T |
| 37 | 1+(−0.587−0.809i)T |
| 41 | 1+(−0.809+0.587i)T |
| 43 | 1+iT |
| 47 | 1+(−0.951+0.309i)T |
| 53 | 1+(0.951−0.309i)T |
| 59 | 1+(0.809−0.587i)T |
| 61 | 1+(0.809+0.587i)T |
| 67 | 1+(−0.951−0.309i)T |
| 71 | 1+(−0.309−0.951i)T |
| 73 | 1+(0.587−0.809i)T |
| 79 | 1+(0.309+0.951i)T |
| 83 | 1+(0.951+0.309i)T |
| 89 | 1+(0.809+0.587i)T |
| 97 | 1+(0.951−0.309i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−26.57761830965674449661441370819, −25.74369359865218948348348489465, −24.37913913773818130215215966317, −23.70509100498744900591390220544, −22.87121290779899380166009628323, −22.12754015394932319348922666802, −20.80816661388769053122250856843, −20.00332288235995144500754714064, −18.73853893207091299041504880736, −17.7405242142036787571914343579, −17.20284323095417001067093471076, −16.013596864777135202681543039, −15.18542306842532422590527125118, −13.42916856746294803756199608610, −13.08505048788713214039461574377, −11.74766324002514017239157462626, −10.66148189270874733899276812532, −10.15095431897031323610037113129, −8.33608436952742948545425502941, −7.24862552425086871583039428779, −6.34447372264862091572902872936, −5.05949758211529482372644394839, −4.05983410113788513272787845507, −2.17897379614529462617909654840, −0.48108368046527431566392026400,
1.78874638294315146385941756382, 3.48174431867222170946660562005, 4.893190964887223781508693277259, 5.803503988798860704150504073570, 6.74192696673321391780177836973, 8.3386215869800799182853315356, 9.36944738862950554579174417906, 10.603610416977542054993547511746, 11.460827543398259143184464612338, 12.34297709694154324886976961850, 13.43307794286949793219184981211, 14.80788992279846331046319307130, 16.01294580490254474812171517052, 16.27798990029838089765233598344, 17.879604653838630871607178078770, 18.31408714582767145100586525576, 19.42552065449808579392271934040, 21.025809971481356982169750566110, 21.512704934878231056255558880944, 22.42837521574886261922992895953, 23.48311238578441950553402236349, 24.1752712910537416998026975948, 25.31684479177583466617918906003, 26.42989172226968078956894030457, 27.3285530271797878155946541393