L(s) = 1 | + (−0.951 + 0.309i)3-s − i·7-s + (0.809 − 0.587i)9-s + (−0.809 − 0.587i)11-s + (0.587 + 0.809i)13-s + (−0.951 − 0.309i)17-s + (−0.309 + 0.951i)19-s + (−0.309 − 0.951i)21-s + (−0.587 + 0.809i)23-s + (−0.587 + 0.809i)27-s + (0.309 + 0.951i)29-s + (−0.309 + 0.951i)31-s + (0.951 + 0.309i)33-s + (−0.587 − 0.809i)37-s + (−0.809 − 0.587i)39-s + ⋯ |
L(s) = 1 | + (−0.951 + 0.309i)3-s − i·7-s + (0.809 − 0.587i)9-s + (−0.809 − 0.587i)11-s + (0.587 + 0.809i)13-s + (−0.951 − 0.309i)17-s + (−0.309 + 0.951i)19-s + (−0.309 − 0.951i)21-s + (−0.587 + 0.809i)23-s + (−0.587 + 0.809i)27-s + (0.309 + 0.951i)29-s + (−0.309 + 0.951i)31-s + (0.951 + 0.309i)33-s + (−0.587 − 0.809i)37-s + (−0.809 − 0.587i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.535 + 0.844i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.535 + 0.844i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2736371921 + 0.4977442046i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2736371921 + 0.4977442046i\) |
\(L(1)\) |
\(\approx\) |
\(0.6348273731 + 0.2427883576i\) |
\(L(1)\) |
\(\approx\) |
\(0.6348273731 + 0.2427883576i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-0.951 + 0.309i)T \) |
| 7 | \( 1 - iT \) |
| 11 | \( 1 + (-0.809 - 0.587i)T \) |
| 13 | \( 1 + (0.587 + 0.809i)T \) |
| 17 | \( 1 + (-0.951 - 0.309i)T \) |
| 19 | \( 1 + (-0.309 + 0.951i)T \) |
| 23 | \( 1 + (-0.587 + 0.809i)T \) |
| 29 | \( 1 + (0.309 + 0.951i)T \) |
| 31 | \( 1 + (-0.309 + 0.951i)T \) |
| 37 | \( 1 + (-0.587 - 0.809i)T \) |
| 41 | \( 1 + (-0.809 + 0.587i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (-0.951 + 0.309i)T \) |
| 53 | \( 1 + (0.951 - 0.309i)T \) |
| 59 | \( 1 + (0.809 - 0.587i)T \) |
| 61 | \( 1 + (0.809 + 0.587i)T \) |
| 67 | \( 1 + (-0.951 - 0.309i)T \) |
| 71 | \( 1 + (-0.309 - 0.951i)T \) |
| 73 | \( 1 + (0.587 - 0.809i)T \) |
| 79 | \( 1 + (0.309 + 0.951i)T \) |
| 83 | \( 1 + (0.951 + 0.309i)T \) |
| 89 | \( 1 + (0.809 + 0.587i)T \) |
| 97 | \( 1 + (0.951 - 0.309i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.57761830965674449661441370819, −25.74369359865218948348348489465, −24.37913913773818130215215966317, −23.70509100498744900591390220544, −22.87121290779899380166009628323, −22.12754015394932319348922666802, −20.80816661388769053122250856843, −20.00332288235995144500754714064, −18.73853893207091299041504880736, −17.7405242142036787571914343579, −17.20284323095417001067093471076, −16.013596864777135202681543039, −15.18542306842532422590527125118, −13.42916856746294803756199608610, −13.08505048788713214039461574377, −11.74766324002514017239157462626, −10.66148189270874733899276812532, −10.15095431897031323610037113129, −8.33608436952742948545425502941, −7.24862552425086871583039428779, −6.34447372264862091572902872936, −5.05949758211529482372644394839, −4.05983410113788513272787845507, −2.17897379614529462617909654840, −0.48108368046527431566392026400,
1.78874638294315146385941756382, 3.48174431867222170946660562005, 4.893190964887223781508693277259, 5.803503988798860704150504073570, 6.74192696673321391780177836973, 8.3386215869800799182853315356, 9.36944738862950554579174417906, 10.603610416977542054993547511746, 11.460827543398259143184464612338, 12.34297709694154324886976961850, 13.43307794286949793219184981211, 14.80788992279846331046319307130, 16.01294580490254474812171517052, 16.27798990029838089765233598344, 17.879604653838630871607178078770, 18.31408714582767145100586525576, 19.42552065449808579392271934040, 21.025809971481356982169750566110, 21.512704934878231056255558880944, 22.42837521574886261922992895953, 23.48311238578441950553402236349, 24.1752712910537416998026975948, 25.31684479177583466617918906003, 26.42989172226968078956894030457, 27.3285530271797878155946541393