Properties

Label 1-201-201.137-r0-0-0
Degree 11
Conductor 201201
Sign 0.687+0.725i-0.687 + 0.725i
Analytic cond. 0.9334400.933440
Root an. cond. 0.9334400.933440
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.841 + 0.540i)2-s + (0.415 + 0.909i)4-s + (−0.654 + 0.755i)5-s + (−0.841 − 0.540i)7-s + (−0.142 + 0.989i)8-s + (−0.959 + 0.281i)10-s + (−0.654 + 0.755i)11-s + (0.142 + 0.989i)13-s + (−0.415 − 0.909i)14-s + (−0.654 + 0.755i)16-s + (−0.415 + 0.909i)17-s + (0.841 − 0.540i)19-s + (−0.959 − 0.281i)20-s + (−0.959 + 0.281i)22-s + (0.959 + 0.281i)23-s + ⋯
L(s)  = 1  + (0.841 + 0.540i)2-s + (0.415 + 0.909i)4-s + (−0.654 + 0.755i)5-s + (−0.841 − 0.540i)7-s + (−0.142 + 0.989i)8-s + (−0.959 + 0.281i)10-s + (−0.654 + 0.755i)11-s + (0.142 + 0.989i)13-s + (−0.415 − 0.909i)14-s + (−0.654 + 0.755i)16-s + (−0.415 + 0.909i)17-s + (0.841 − 0.540i)19-s + (−0.959 − 0.281i)20-s + (−0.959 + 0.281i)22-s + (0.959 + 0.281i)23-s + ⋯

Functional equation

Λ(s)=(201s/2ΓR(s)L(s)=((0.687+0.725i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 201 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.687 + 0.725i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(201s/2ΓR(s)L(s)=((0.687+0.725i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 201 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.687 + 0.725i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 201201    =    3673 \cdot 67
Sign: 0.687+0.725i-0.687 + 0.725i
Analytic conductor: 0.9334400.933440
Root analytic conductor: 0.9334400.933440
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ201(137,)\chi_{201} (137, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 201, (0: ), 0.687+0.725i)(1,\ 201,\ (0:\ ),\ -0.687 + 0.725i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.5258615849+1.222942315i0.5258615849 + 1.222942315i
L(12)L(\frac12) \approx 0.5258615849+1.222942315i0.5258615849 + 1.222942315i
L(1)L(1) \approx 1.026372748+0.7656479065i1.026372748 + 0.7656479065i
L(1)L(1) \approx 1.026372748+0.7656479065i1.026372748 + 0.7656479065i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
67 1 1
good2 1+(0.841+0.540i)T 1 + (0.841 + 0.540i)T
5 1+(0.654+0.755i)T 1 + (-0.654 + 0.755i)T
7 1+(0.8410.540i)T 1 + (-0.841 - 0.540i)T
11 1+(0.654+0.755i)T 1 + (-0.654 + 0.755i)T
13 1+(0.142+0.989i)T 1 + (0.142 + 0.989i)T
17 1+(0.415+0.909i)T 1 + (-0.415 + 0.909i)T
19 1+(0.8410.540i)T 1 + (0.841 - 0.540i)T
23 1+(0.959+0.281i)T 1 + (0.959 + 0.281i)T
29 1T 1 - T
31 1+(0.1420.989i)T 1 + (0.142 - 0.989i)T
37 1+T 1 + T
41 1+(0.4150.909i)T 1 + (0.415 - 0.909i)T
43 1+(0.415+0.909i)T 1 + (-0.415 + 0.909i)T
47 1+(0.959+0.281i)T 1 + (0.959 + 0.281i)T
53 1+(0.415+0.909i)T 1 + (0.415 + 0.909i)T
59 1+(0.1420.989i)T 1 + (0.142 - 0.989i)T
61 1+(0.654+0.755i)T 1 + (0.654 + 0.755i)T
71 1+(0.4150.909i)T 1 + (-0.415 - 0.909i)T
73 1+(0.6540.755i)T 1 + (-0.654 - 0.755i)T
79 1+(0.142+0.989i)T 1 + (0.142 + 0.989i)T
83 1+(0.6540.755i)T 1 + (0.654 - 0.755i)T
89 1+(0.9590.281i)T 1 + (0.959 - 0.281i)T
97 1T 1 - T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−26.7552553719916532284543286328, −25.08422716582236860336547551125, −24.66293352015286612652885278493, −23.45727070706359065874633886476, −22.78578150380048621109015587447, −21.87814062379648444458741050272, −20.72289635166183369960480044000, −20.11611071390770150261096896034, −19.097602589522889969584821922004, −18.29834448455303035724597625733, −16.401566510634703654893522127907, −15.85264206681340921931761620714, −14.963981686713909485150165698339, −13.45782949000260443809598550639, −12.89283413412035468400029451306, −11.94849711661368708873422016674, −10.9990055117642095610066344508, −9.76250639861285815040398301617, −8.65745990924392822759376007387, −7.247576129392121597160644562508, −5.755607166650076407420323975500, −5.05984178361529798230220819780, −3.575011137983380617559283541870, −2.75083019888413403885742086030, −0.776089820147681477182095972814, 2.47281155441932568263282125741, 3.636565022930741865750870959589, 4.508756878980769056623078816033, 6.069638926258411362776465027, 7.06771046111135330817956475979, 7.65685259591740330785558883197, 9.27395406406590113187570111861, 10.71687739704950325120953677333, 11.61823419549539959101517381332, 12.82399660785939857120476146181, 13.580464500606299281959339193217, 14.7790882872251403655662732206, 15.49466074673483640341355608395, 16.37824184853399008692804918075, 17.410919377479772291128873740127, 18.67989398753253127725972752290, 19.7281021890256342332879739802, 20.68616336074606880494853912481, 21.91393312383191510749315179413, 22.63556000188671269716031006208, 23.45222781450721613535598478301, 24.04752491668103125380909386814, 25.4766780646140932619354647762, 26.312808609629194403598523699405, 26.607004973984849105407403217962

Graph of the ZZ-function along the critical line