L(s) = 1 | + (−0.654 + 0.755i)2-s + (−0.142 − 0.989i)4-s + (−0.959 + 0.281i)5-s + (0.654 − 0.755i)7-s + (0.841 + 0.540i)8-s + (0.415 − 0.909i)10-s + (−0.959 + 0.281i)11-s + (−0.841 + 0.540i)13-s + (0.142 + 0.989i)14-s + (−0.959 + 0.281i)16-s + (0.142 − 0.989i)17-s + (−0.654 − 0.755i)19-s + (0.415 + 0.909i)20-s + (0.415 − 0.909i)22-s + (−0.415 − 0.909i)23-s + ⋯ |
L(s) = 1 | + (−0.654 + 0.755i)2-s + (−0.142 − 0.989i)4-s + (−0.959 + 0.281i)5-s + (0.654 − 0.755i)7-s + (0.841 + 0.540i)8-s + (0.415 − 0.909i)10-s + (−0.959 + 0.281i)11-s + (−0.841 + 0.540i)13-s + (0.142 + 0.989i)14-s + (−0.959 + 0.281i)16-s + (0.142 − 0.989i)17-s + (−0.654 − 0.755i)19-s + (0.415 + 0.909i)20-s + (0.415 − 0.909i)22-s + (−0.415 − 0.909i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 201 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0143 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 201 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0143 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2260820013 - 0.2228617224i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2260820013 - 0.2228617224i\) |
\(L(1)\) |
\(\approx\) |
\(0.5196852629 + 0.04258917027i\) |
\(L(1)\) |
\(\approx\) |
\(0.5196852629 + 0.04258917027i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 67 | \( 1 \) |
good | 2 | \( 1 + (-0.654 + 0.755i)T \) |
| 5 | \( 1 + (-0.959 + 0.281i)T \) |
| 7 | \( 1 + (0.654 - 0.755i)T \) |
| 11 | \( 1 + (-0.959 + 0.281i)T \) |
| 13 | \( 1 + (-0.841 + 0.540i)T \) |
| 17 | \( 1 + (0.142 - 0.989i)T \) |
| 19 | \( 1 + (-0.654 - 0.755i)T \) |
| 23 | \( 1 + (-0.415 - 0.909i)T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + (-0.841 - 0.540i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (-0.142 + 0.989i)T \) |
| 43 | \( 1 + (0.142 - 0.989i)T \) |
| 47 | \( 1 + (-0.415 - 0.909i)T \) |
| 53 | \( 1 + (-0.142 - 0.989i)T \) |
| 59 | \( 1 + (-0.841 - 0.540i)T \) |
| 61 | \( 1 + (0.959 + 0.281i)T \) |
| 71 | \( 1 + (0.142 + 0.989i)T \) |
| 73 | \( 1 + (-0.959 - 0.281i)T \) |
| 79 | \( 1 + (-0.841 + 0.540i)T \) |
| 83 | \( 1 + (0.959 - 0.281i)T \) |
| 89 | \( 1 + (-0.415 + 0.909i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.44595124639957917776357341629, −26.43747972287320956779361315399, −25.408150712451109990024636864707, −24.29052962117661685433256214629, −23.36998029927048332946417451330, −22.08302438091255271037808145183, −21.282063433503795073623804631788, −20.38364120125684742901821786247, −19.4163589167218100777689079066, −18.69086725121857930050590426347, −17.72781528369462217627677591113, −16.6869746072912725195638804059, −15.62768265289603601065509461256, −14.68459831588827493514462978687, −12.916201916920024459510662907685, −12.34400931812930603771135869176, −11.30464944509767718249456590754, −10.479353559154195363545296252395, −9.14706579981821034996463291741, −8.04516914650132775508211320484, −7.66404230483529753950863013126, −5.5604568650674282029314228112, −4.27710287872435185875642802329, −3.04027217090075154337236799055, −1.72071394238566230475267582136,
0.293661168441825734530510058997, 2.2923139398611878772433390976, 4.27988041504486269055887730083, 5.112576441624746661205869117186, 6.87498357513063861327748601711, 7.49354143634446355333809439698, 8.342638683901677103094656604756, 9.697580066718913106052838426333, 10.76364741286709250758509619306, 11.560770682138433814147910181030, 13.15191008569234488945835683652, 14.45031630282490765246289471270, 15.02874552708132060583834939024, 16.16374707921105939358739220646, 16.90367025388401692957014713264, 18.08390618528244318909386804976, 18.77378334850410913176618126130, 19.89976233281387043760440282801, 20.56532750508000753904399971881, 22.19079114926918714868800984328, 23.34088367419307333826813119889, 23.80300353894516879060755755622, 24.6460128309832206861569898529, 26.0447819528734034895811277924, 26.59409106538398915000167083246