L(s) = 1 | + (−0.654 + 0.755i)2-s + (−0.142 − 0.989i)4-s + (−0.959 + 0.281i)5-s + (0.654 − 0.755i)7-s + (0.841 + 0.540i)8-s + (0.415 − 0.909i)10-s + (−0.959 + 0.281i)11-s + (−0.841 + 0.540i)13-s + (0.142 + 0.989i)14-s + (−0.959 + 0.281i)16-s + (0.142 − 0.989i)17-s + (−0.654 − 0.755i)19-s + (0.415 + 0.909i)20-s + (0.415 − 0.909i)22-s + (−0.415 − 0.909i)23-s + ⋯ |
L(s) = 1 | + (−0.654 + 0.755i)2-s + (−0.142 − 0.989i)4-s + (−0.959 + 0.281i)5-s + (0.654 − 0.755i)7-s + (0.841 + 0.540i)8-s + (0.415 − 0.909i)10-s + (−0.959 + 0.281i)11-s + (−0.841 + 0.540i)13-s + (0.142 + 0.989i)14-s + (−0.959 + 0.281i)16-s + (0.142 − 0.989i)17-s + (−0.654 − 0.755i)19-s + (0.415 + 0.909i)20-s + (0.415 − 0.909i)22-s + (−0.415 − 0.909i)23-s + ⋯ |
Λ(s)=(=(201s/2ΓR(s)L(s)(0.0143−0.999i)Λ(1−s)
Λ(s)=(=(201s/2ΓR(s)L(s)(0.0143−0.999i)Λ(1−s)
Degree: |
1 |
Conductor: |
201
= 3⋅67
|
Sign: |
0.0143−0.999i
|
Analytic conductor: |
0.933440 |
Root analytic conductor: |
0.933440 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ201(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 201, (0: ), 0.0143−0.999i)
|
Particular Values
L(21) |
≈ |
0.2260820013−0.2228617224i |
L(21) |
≈ |
0.2260820013−0.2228617224i |
L(1) |
≈ |
0.5196852629+0.04258917027i |
L(1) |
≈ |
0.5196852629+0.04258917027i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 67 | 1 |
good | 2 | 1+(−0.654+0.755i)T |
| 5 | 1+(−0.959+0.281i)T |
| 7 | 1+(0.654−0.755i)T |
| 11 | 1+(−0.959+0.281i)T |
| 13 | 1+(−0.841+0.540i)T |
| 17 | 1+(0.142−0.989i)T |
| 19 | 1+(−0.654−0.755i)T |
| 23 | 1+(−0.415−0.909i)T |
| 29 | 1−T |
| 31 | 1+(−0.841−0.540i)T |
| 37 | 1+T |
| 41 | 1+(−0.142+0.989i)T |
| 43 | 1+(0.142−0.989i)T |
| 47 | 1+(−0.415−0.909i)T |
| 53 | 1+(−0.142−0.989i)T |
| 59 | 1+(−0.841−0.540i)T |
| 61 | 1+(0.959+0.281i)T |
| 71 | 1+(0.142+0.989i)T |
| 73 | 1+(−0.959−0.281i)T |
| 79 | 1+(−0.841+0.540i)T |
| 83 | 1+(0.959−0.281i)T |
| 89 | 1+(−0.415+0.909i)T |
| 97 | 1−T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−27.44595124639957917776357341629, −26.43747972287320956779361315399, −25.408150712451109990024636864707, −24.29052962117661685433256214629, −23.36998029927048332946417451330, −22.08302438091255271037808145183, −21.282063433503795073623804631788, −20.38364120125684742901821786247, −19.4163589167218100777689079066, −18.69086725121857930050590426347, −17.72781528369462217627677591113, −16.6869746072912725195638804059, −15.62768265289603601065509461256, −14.68459831588827493514462978687, −12.916201916920024459510662907685, −12.34400931812930603771135869176, −11.30464944509767718249456590754, −10.479353559154195363545296252395, −9.14706579981821034996463291741, −8.04516914650132775508211320484, −7.66404230483529753950863013126, −5.5604568650674282029314228112, −4.27710287872435185875642802329, −3.04027217090075154337236799055, −1.72071394238566230475267582136,
0.293661168441825734530510058997, 2.2923139398611878772433390976, 4.27988041504486269055887730083, 5.112576441624746661205869117186, 6.87498357513063861327748601711, 7.49354143634446355333809439698, 8.342638683901677103094656604756, 9.697580066718913106052838426333, 10.76364741286709250758509619306, 11.560770682138433814147910181030, 13.15191008569234488945835683652, 14.45031630282490765246289471270, 15.02874552708132060583834939024, 16.16374707921105939358739220646, 16.90367025388401692957014713264, 18.08390618528244318909386804976, 18.77378334850410913176618126130, 19.89976233281387043760440282801, 20.56532750508000753904399971881, 22.19079114926918714868800984328, 23.34088367419307333826813119889, 23.80300353894516879060755755622, 24.6460128309832206861569898529, 26.0447819528734034895811277924, 26.59409106538398915000167083246