L(s) = 1 | + (0.222 − 0.974i)2-s + (−0.900 − 0.433i)4-s + (−0.988 − 0.149i)5-s + (−0.623 + 0.781i)8-s + (−0.365 + 0.930i)10-s + (0.733 + 0.680i)11-s + (0.733 + 0.680i)13-s + (0.623 + 0.781i)16-s + (0.826 + 0.563i)17-s + (0.5 − 0.866i)19-s + (0.826 + 0.563i)20-s + (0.826 − 0.563i)22-s + (−0.0747 − 0.997i)23-s + (0.955 + 0.294i)25-s + (0.826 − 0.563i)26-s + ⋯ |
L(s) = 1 | + (0.222 − 0.974i)2-s + (−0.900 − 0.433i)4-s + (−0.988 − 0.149i)5-s + (−0.623 + 0.781i)8-s + (−0.365 + 0.930i)10-s + (0.733 + 0.680i)11-s + (0.733 + 0.680i)13-s + (0.623 + 0.781i)16-s + (0.826 + 0.563i)17-s + (0.5 − 0.866i)19-s + (0.826 + 0.563i)20-s + (0.826 − 0.563i)22-s + (−0.0747 − 0.997i)23-s + (0.955 + 0.294i)25-s + (0.826 − 0.563i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.250 - 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.250 - 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9238635931 - 0.7154632203i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9238635931 - 0.7154632203i\) |
\(L(1)\) |
\(\approx\) |
\(0.8838012861 - 0.4699675748i\) |
\(L(1)\) |
\(\approx\) |
\(0.8838012861 - 0.4699675748i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.222 - 0.974i)T \) |
| 5 | \( 1 + (-0.988 - 0.149i)T \) |
| 11 | \( 1 + (0.733 + 0.680i)T \) |
| 13 | \( 1 + (0.733 + 0.680i)T \) |
| 17 | \( 1 + (0.826 + 0.563i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.0747 - 0.997i)T \) |
| 29 | \( 1 + (-0.826 - 0.563i)T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + (0.0747 - 0.997i)T \) |
| 41 | \( 1 + (0.365 + 0.930i)T \) |
| 43 | \( 1 + (0.365 - 0.930i)T \) |
| 47 | \( 1 + (-0.222 + 0.974i)T \) |
| 53 | \( 1 + (-0.0747 - 0.997i)T \) |
| 59 | \( 1 + (0.623 + 0.781i)T \) |
| 61 | \( 1 + (0.900 - 0.433i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (0.900 + 0.433i)T \) |
| 73 | \( 1 + (0.733 - 0.680i)T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + (-0.733 + 0.680i)T \) |
| 89 | \( 1 + (0.955 + 0.294i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.17388315808419297627373965426, −23.427361955144572530492355614299, −22.726200714161571703455008725680, −22.0436455659723744799301739616, −20.88480585606454429172027934559, −19.89173304497479259287014016151, −18.777512612063110104157155333422, −18.30260095062198325605177984855, −17.031363891263621967064132344029, −16.27948761745965266686385294044, −15.65269464825688625701414155570, −14.67970749100019686714970846544, −14.005840487229129261250049075728, −12.92906632305718089450944992643, −11.98127333984836725624466799675, −11.11853165560465031226076749751, −9.74435235188700366841958031475, −8.70575244972599493008218032868, −7.876100373090598841381041644780, −7.1667672283901441192132314003, −5.98460871221080466931731189066, −5.1798316525878836144292162259, −3.66829407528347224126486330693, −3.446959001663798576289080905788, −0.97137204705306009824985418367,
0.92239033776487381418482629624, 2.17297389242250859550146480589, 3.621064892703081909844924661719, 4.12568778955047580555430913411, 5.22801750138660285689428100522, 6.572330540829049654613152677055, 7.79682379149293185356835828531, 8.85753297636902562571236715413, 9.590369126505404546999044350488, 10.86422258387585840776690230899, 11.48805354266598773244526959523, 12.33395961101203788834775176901, 13.037328587737611376809615884027, 14.29752999172196312983399329141, 14.88072233591268483598546922818, 16.041181971964041441691323243549, 17.021810243264649847223764172412, 18.13837988500297150567027979813, 18.95369302486208944189695819229, 19.66511076208657472469588213642, 20.39892310758937542317718264796, 21.15939539026515411724352434421, 22.2540043145126963029503369863, 22.87739300221050384714951428983, 23.70248364261093443396377247505