L(s) = 1 | + (0.988 − 0.149i)2-s + (0.955 − 0.294i)4-s + (−0.900 + 0.433i)5-s + (0.900 − 0.433i)8-s + (−0.826 + 0.563i)10-s + (−0.623 − 0.781i)11-s + (0.988 − 0.149i)13-s + (0.826 − 0.563i)16-s + (0.955 + 0.294i)17-s + (0.5 + 0.866i)19-s + (−0.733 + 0.680i)20-s + (−0.733 − 0.680i)22-s + (0.222 − 0.974i)23-s + (0.623 − 0.781i)25-s + (0.955 − 0.294i)26-s + ⋯ |
L(s) = 1 | + (0.988 − 0.149i)2-s + (0.955 − 0.294i)4-s + (−0.900 + 0.433i)5-s + (0.900 − 0.433i)8-s + (−0.826 + 0.563i)10-s + (−0.623 − 0.781i)11-s + (0.988 − 0.149i)13-s + (0.826 − 0.563i)16-s + (0.955 + 0.294i)17-s + (0.5 + 0.866i)19-s + (−0.733 + 0.680i)20-s + (−0.733 − 0.680i)22-s + (0.222 − 0.974i)23-s + (0.623 − 0.781i)25-s + (0.955 − 0.294i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.944 - 0.328i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.944 - 0.328i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.262635699 - 0.3823645978i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.262635699 - 0.3823645978i\) |
\(L(1)\) |
\(\approx\) |
\(1.756795588 - 0.1759507745i\) |
\(L(1)\) |
\(\approx\) |
\(1.756795588 - 0.1759507745i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.988 - 0.149i)T \) |
| 5 | \( 1 + (-0.900 + 0.433i)T \) |
| 11 | \( 1 + (-0.623 - 0.781i)T \) |
| 13 | \( 1 + (0.988 - 0.149i)T \) |
| 17 | \( 1 + (0.955 + 0.294i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.222 - 0.974i)T \) |
| 29 | \( 1 + (0.733 - 0.680i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.733 + 0.680i)T \) |
| 41 | \( 1 + (0.0747 - 0.997i)T \) |
| 43 | \( 1 + (0.0747 + 0.997i)T \) |
| 47 | \( 1 + (-0.988 + 0.149i)T \) |
| 53 | \( 1 + (0.733 + 0.680i)T \) |
| 59 | \( 1 + (0.0747 + 0.997i)T \) |
| 61 | \( 1 + (-0.955 - 0.294i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (0.222 - 0.974i)T \) |
| 73 | \( 1 + (-0.365 - 0.930i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.988 - 0.149i)T \) |
| 89 | \( 1 + (-0.988 - 0.149i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.80893516646139473110209348792, −23.29431578072601095956191157859, −22.70594879387624971557101151357, −21.46791758679654584102891447373, −20.767500141415001818137997101521, −20.06507686343503978800316188252, −19.20181030745650105986579573507, −18.02991044858508037645118232788, −16.88773773958883066974912779856, −15.870121799750203377516333742615, −15.57935975950191033844151135299, −14.52343646980272350276317543742, −13.463073598142106089568594452385, −12.764306437283444938566019935103, −11.81455591313837038812182723157, −11.21390695284359374970992661586, −10.0070333894355593354901452414, −8.60484763186056841283688342928, −7.62957474628346761179848744059, −6.9429202339520937020812681103, −5.55638877723957010850035041308, −4.8022560058328119916363138240, −3.791837086192760785940157071060, −2.88667103928103259646759365258, −1.348452535056967044914511827273,
1.18832358395202863558477537732, 2.906129524858665102451192110196, 3.46730062966293712046846872257, 4.54418270163407543031672527784, 5.719542254817866731961433351526, 6.53170675378107750512742918784, 7.728352199192891644659950300644, 8.41393642384188500579291024676, 10.28157764315235791614279827086, 10.783293676698212433227461740840, 11.82191916360826925834922385143, 12.453346970358285641885492517954, 13.61512598461922315809791189702, 14.29191519416521468918438832637, 15.27475644474982768976247072259, 16.00238592570310838638332255066, 16.633774111980960374176870420703, 18.31669356647707114104461566522, 18.97624627918390162500474747663, 19.78884034508949704610725731912, 20.9136904369319711897079828110, 21.27307518877441183939242336589, 22.69675946036974746785193989383, 22.941695231132355824269335618148, 23.837663431911150476198657990323