L(s) = 1 | + (0.988 − 0.149i)2-s + (0.955 − 0.294i)4-s + (−0.900 + 0.433i)5-s + (0.900 − 0.433i)8-s + (−0.826 + 0.563i)10-s + (−0.623 − 0.781i)11-s + (0.988 − 0.149i)13-s + (0.826 − 0.563i)16-s + (0.955 + 0.294i)17-s + (0.5 + 0.866i)19-s + (−0.733 + 0.680i)20-s + (−0.733 − 0.680i)22-s + (0.222 − 0.974i)23-s + (0.623 − 0.781i)25-s + (0.955 − 0.294i)26-s + ⋯ |
L(s) = 1 | + (0.988 − 0.149i)2-s + (0.955 − 0.294i)4-s + (−0.900 + 0.433i)5-s + (0.900 − 0.433i)8-s + (−0.826 + 0.563i)10-s + (−0.623 − 0.781i)11-s + (0.988 − 0.149i)13-s + (0.826 − 0.563i)16-s + (0.955 + 0.294i)17-s + (0.5 + 0.866i)19-s + (−0.733 + 0.680i)20-s + (−0.733 − 0.680i)22-s + (0.222 − 0.974i)23-s + (0.623 − 0.781i)25-s + (0.955 − 0.294i)26-s + ⋯ |
Λ(s)=(=(441s/2ΓR(s)L(s)(0.944−0.328i)Λ(1−s)
Λ(s)=(=(441s/2ΓR(s)L(s)(0.944−0.328i)Λ(1−s)
Degree: |
1 |
Conductor: |
441
= 32⋅72
|
Sign: |
0.944−0.328i
|
Analytic conductor: |
2.04799 |
Root analytic conductor: |
2.04799 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(110,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 441, (0: ), 0.944−0.328i)
|
Particular Values
L(21) |
≈ |
2.262635699−0.3823645978i |
L(21) |
≈ |
2.262635699−0.3823645978i |
L(1) |
≈ |
1.756795588−0.1759507745i |
L(1) |
≈ |
1.756795588−0.1759507745i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+(0.988−0.149i)T |
| 5 | 1+(−0.900+0.433i)T |
| 11 | 1+(−0.623−0.781i)T |
| 13 | 1+(0.988−0.149i)T |
| 17 | 1+(0.955+0.294i)T |
| 19 | 1+(0.5+0.866i)T |
| 23 | 1+(0.222−0.974i)T |
| 29 | 1+(0.733−0.680i)T |
| 31 | 1+(0.5+0.866i)T |
| 37 | 1+(−0.733+0.680i)T |
| 41 | 1+(0.0747−0.997i)T |
| 43 | 1+(0.0747+0.997i)T |
| 47 | 1+(−0.988+0.149i)T |
| 53 | 1+(0.733+0.680i)T |
| 59 | 1+(0.0747+0.997i)T |
| 61 | 1+(−0.955−0.294i)T |
| 67 | 1+(−0.5−0.866i)T |
| 71 | 1+(0.222−0.974i)T |
| 73 | 1+(−0.365−0.930i)T |
| 79 | 1+(−0.5+0.866i)T |
| 83 | 1+(−0.988−0.149i)T |
| 89 | 1+(−0.988−0.149i)T |
| 97 | 1+(0.5+0.866i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.80893516646139473110209348792, −23.29431578072601095956191157859, −22.70594879387624971557101151357, −21.46791758679654584102891447373, −20.767500141415001818137997101521, −20.06507686343503978800316188252, −19.20181030745650105986579573507, −18.02991044858508037645118232788, −16.88773773958883066974912779856, −15.870121799750203377516333742615, −15.57935975950191033844151135299, −14.52343646980272350276317543742, −13.463073598142106089568594452385, −12.764306437283444938566019935103, −11.81455591313837038812182723157, −11.21390695284359374970992661586, −10.0070333894355593354901452414, −8.60484763186056841283688342928, −7.62957474628346761179848744059, −6.9429202339520937020812681103, −5.55638877723957010850035041308, −4.8022560058328119916363138240, −3.791837086192760785940157071060, −2.88667103928103259646759365258, −1.348452535056967044914511827273,
1.18832358395202863558477537732, 2.906129524858665102451192110196, 3.46730062966293712046846872257, 4.54418270163407543031672527784, 5.719542254817866731961433351526, 6.53170675378107750512742918784, 7.728352199192891644659950300644, 8.41393642384188500579291024676, 10.28157764315235791614279827086, 10.783293676698212433227461740840, 11.82191916360826925834922385143, 12.453346970358285641885492517954, 13.61512598461922315809791189702, 14.29191519416521468918438832637, 15.27475644474982768976247072259, 16.00238592570310838638332255066, 16.633774111980960374176870420703, 18.31669356647707114104461566522, 18.97624627918390162500474747663, 19.78884034508949704610725731912, 20.9136904369319711897079828110, 21.27307518877441183939242336589, 22.69675946036974746785193989383, 22.941695231132355824269335618148, 23.837663431911150476198657990323