L(s) = 1 | + (0.988 + 0.149i)2-s + (0.955 + 0.294i)4-s + (0.826 − 0.563i)5-s + (0.900 + 0.433i)8-s + (0.900 − 0.433i)10-s + (0.988 + 0.149i)11-s + (−0.365 − 0.930i)13-s + (0.826 + 0.563i)16-s + (−0.222 + 0.974i)17-s − 19-s + (0.955 − 0.294i)20-s + (0.955 + 0.294i)22-s + (−0.955 − 0.294i)23-s + (0.365 − 0.930i)25-s + (−0.222 − 0.974i)26-s + ⋯ |
L(s) = 1 | + (0.988 + 0.149i)2-s + (0.955 + 0.294i)4-s + (0.826 − 0.563i)5-s + (0.900 + 0.433i)8-s + (0.900 − 0.433i)10-s + (0.988 + 0.149i)11-s + (−0.365 − 0.930i)13-s + (0.826 + 0.563i)16-s + (−0.222 + 0.974i)17-s − 19-s + (0.955 − 0.294i)20-s + (0.955 + 0.294i)22-s + (−0.955 − 0.294i)23-s + (0.365 − 0.930i)25-s + (−0.222 − 0.974i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0142i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0142i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.923998086 + 0.02083030907i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.923998086 + 0.02083030907i\) |
\(L(1)\) |
\(\approx\) |
\(2.156679218 + 0.03019759526i\) |
\(L(1)\) |
\(\approx\) |
\(2.156679218 + 0.03019759526i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.988 + 0.149i)T \) |
| 5 | \( 1 + (0.826 - 0.563i)T \) |
| 11 | \( 1 + (0.988 + 0.149i)T \) |
| 13 | \( 1 + (-0.365 - 0.930i)T \) |
| 17 | \( 1 + (-0.222 + 0.974i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (-0.955 - 0.294i)T \) |
| 29 | \( 1 + (-0.955 + 0.294i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.222 + 0.974i)T \) |
| 41 | \( 1 + (0.826 - 0.563i)T \) |
| 43 | \( 1 + (0.826 + 0.563i)T \) |
| 47 | \( 1 + (-0.988 - 0.149i)T \) |
| 53 | \( 1 + (0.222 + 0.974i)T \) |
| 59 | \( 1 + (0.0747 - 0.997i)T \) |
| 61 | \( 1 + (-0.955 + 0.294i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.222 + 0.974i)T \) |
| 73 | \( 1 + (-0.623 - 0.781i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.365 - 0.930i)T \) |
| 89 | \( 1 + (0.623 + 0.781i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.137727857031038604927008592965, −22.912391770718900351422154901305, −22.395573092855550131884222731453, −21.4939212980851935188806815081, −21.05016471832816406018295341501, −19.7839812156713508474396163158, −19.16786728639155301205733626084, −18.014513662135685239737169748755, −16.9818665626618267194350865663, −16.19648573032904323493423210452, −15.02137000089346396829847238419, −14.215614209828210669434216549230, −13.81241738422977658565461960661, −12.692280500007263776735589823911, −11.716226231253165004757145833550, −10.99316344950427682708501900899, −9.91173547887421797074616687153, −9.0721446521066526635634571039, −7.37599182369069006192510660926, −6.57184184092693106920584968125, −5.8672582086343799265427740059, −4.66068281026875340855162600006, −3.70480773807578877400668348565, −2.470666697866732964475400578540, −1.663593427375952781692482506758,
1.51568788839376820962720775862, 2.47371433617371689821463641292, 3.87797142625185906181955045548, 4.695902076773280987356927037296, 5.898542653789488649146184312939, 6.34333287010488001261946511986, 7.71101585602416644848013443557, 8.717743845647541646738531633686, 9.94145256770593084325914326166, 10.81613637535391552130558124667, 12.041117872740705927590955336691, 12.756432868635157431354138702317, 13.42596724427583744299719554483, 14.499015383854207745869408790088, 15.052665879178990927507492582416, 16.22684441058696419668376508680, 17.13208363511321397186759304799, 17.56060073592040904860589717562, 19.16168668805591114060363769753, 20.09982379110120959950081428627, 20.6917328017319980973568155726, 21.74761498502629331008360591076, 22.19040264592696302829694363487, 23.119728936605724048084629698085, 24.36229747745158744614674789255