L(s) = 1 | + (0.254 + 0.967i)2-s + (−0.466 − 0.884i)3-s + (−0.870 + 0.491i)4-s + (0.564 + 0.825i)5-s + (0.736 − 0.676i)6-s + (0.0855 + 0.996i)7-s + (−0.696 − 0.717i)8-s + (−0.564 + 0.825i)9-s + (−0.654 + 0.755i)10-s + (0.841 + 0.540i)12-s + (−0.516 − 0.856i)13-s + (−0.941 + 0.336i)14-s + (0.466 − 0.884i)15-s + (0.516 − 0.856i)16-s + (−0.736 + 0.676i)17-s + (−0.941 − 0.336i)18-s + ⋯ |
L(s) = 1 | + (0.254 + 0.967i)2-s + (−0.466 − 0.884i)3-s + (−0.870 + 0.491i)4-s + (0.564 + 0.825i)5-s + (0.736 − 0.676i)6-s + (0.0855 + 0.996i)7-s + (−0.696 − 0.717i)8-s + (−0.564 + 0.825i)9-s + (−0.654 + 0.755i)10-s + (0.841 + 0.540i)12-s + (−0.516 − 0.856i)13-s + (−0.941 + 0.336i)14-s + (0.466 − 0.884i)15-s + (0.516 − 0.856i)16-s + (−0.736 + 0.676i)17-s + (−0.941 − 0.336i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.895 + 0.445i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.895 + 0.445i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1920603169 + 0.8166640569i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1920603169 + 0.8166640569i\) |
\(L(1)\) |
\(\approx\) |
\(0.7025452752 + 0.5320309538i\) |
\(L(1)\) |
\(\approx\) |
\(0.7025452752 + 0.5320309538i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 23 | \( 1 \) |
good | 2 | \( 1 + (0.254 + 0.967i)T \) |
| 3 | \( 1 + (-0.466 - 0.884i)T \) |
| 5 | \( 1 + (0.564 + 0.825i)T \) |
| 7 | \( 1 + (0.0855 + 0.996i)T \) |
| 13 | \( 1 + (-0.516 - 0.856i)T \) |
| 17 | \( 1 + (-0.736 + 0.676i)T \) |
| 19 | \( 1 + (0.198 + 0.980i)T \) |
| 29 | \( 1 + (-0.198 + 0.980i)T \) |
| 31 | \( 1 + (-0.985 - 0.170i)T \) |
| 37 | \( 1 + (-0.610 - 0.791i)T \) |
| 41 | \( 1 + (-0.610 + 0.791i)T \) |
| 43 | \( 1 + (-0.142 + 0.989i)T \) |
| 47 | \( 1 + (-0.809 + 0.587i)T \) |
| 53 | \( 1 + (0.921 - 0.389i)T \) |
| 59 | \( 1 + (0.974 - 0.226i)T \) |
| 61 | \( 1 + (0.897 - 0.441i)T \) |
| 67 | \( 1 + (-0.841 + 0.540i)T \) |
| 71 | \( 1 + (0.774 + 0.633i)T \) |
| 73 | \( 1 + (0.870 - 0.491i)T \) |
| 79 | \( 1 + (0.516 + 0.856i)T \) |
| 83 | \( 1 + (-0.0285 - 0.999i)T \) |
| 89 | \( 1 + (0.142 - 0.989i)T \) |
| 97 | \( 1 + (0.0285 - 0.999i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.97063073775548171862153799876, −24.24969069671730884920392474663, −23.683384707128178058672417504850, −22.52695545707746130347757115090, −21.84711220259107640997951195463, −20.93797454579476264684819793982, −20.35335362094518611397629121674, −19.5574497202697712373014163221, −18.007985113263964903438810250104, −17.23350302312180516268340230665, −16.502164729829045095286893426305, −15.21569801745667897077333721465, −13.95452863487414067265424534277, −13.3750519981563993822431591174, −12.06473748949579975802292309394, −11.28407697126019565311624497339, −10.263768370823174221939698753570, −9.49031545266437929180681807548, −8.73248079886539066263475703303, −6.778137143393768851352604959789, −5.2882792294863444510695703418, −4.64771705268282336375291012296, −3.74766857752777236052198960735, −2.13952463510092059035605268275, −0.560046738150124289762806973594,
1.97071609772684550816768097465, 3.25533030007023221069652132530, 5.192866341897994841597899427012, 5.85738863505724375566286987207, 6.70167574516068577023962929454, 7.697486355467958621830435924182, 8.675405688634991613549961658682, 10.009554049128458728037467204274, 11.305008455812183424635155665211, 12.55335237556973459614020302038, 13.09462406012643863540463468530, 14.389944224189641204072093768300, 14.90506245859024378854578027418, 16.14504337667033311351353146337, 17.26220768834512486553305414778, 18.04188022297712123260814156524, 18.46513127631100040314758687453, 19.5752141212230515292826527417, 21.34499237525415528820145656597, 22.2677225482876644588091526345, 22.62036260357891458992956984456, 23.779703035195361962512789486597, 24.70302057517837416152760697189, 25.21517679272633884611214041254, 26.01528584827295065711238533680