L(s) = 1 | + (0.959 + 0.281i)2-s + (−0.654 + 0.755i)3-s + (0.841 + 0.540i)4-s + (0.142 − 0.989i)5-s + (−0.841 + 0.540i)6-s + (0.415 + 0.909i)7-s + (0.654 + 0.755i)8-s + (−0.142 − 0.989i)9-s + (0.415 − 0.909i)10-s + (−0.959 + 0.281i)12-s + (−0.415 + 0.909i)13-s + (0.142 + 0.989i)14-s + (0.654 + 0.755i)15-s + (0.415 + 0.909i)16-s + (0.841 − 0.540i)17-s + (0.142 − 0.989i)18-s + ⋯ |
L(s) = 1 | + (0.959 + 0.281i)2-s + (−0.654 + 0.755i)3-s + (0.841 + 0.540i)4-s + (0.142 − 0.989i)5-s + (−0.841 + 0.540i)6-s + (0.415 + 0.909i)7-s + (0.654 + 0.755i)8-s + (−0.142 − 0.989i)9-s + (0.415 − 0.909i)10-s + (−0.959 + 0.281i)12-s + (−0.415 + 0.909i)13-s + (0.142 + 0.989i)14-s + (0.654 + 0.755i)15-s + (0.415 + 0.909i)16-s + (0.841 − 0.540i)17-s + (0.142 − 0.989i)18-s + ⋯ |
Λ(s)=(=(253s/2ΓR(s)L(s)(0.294+0.955i)Λ(1−s)
Λ(s)=(=(253s/2ΓR(s)L(s)(0.294+0.955i)Λ(1−s)
Degree: |
1 |
Conductor: |
253
= 11⋅23
|
Sign: |
0.294+0.955i
|
Analytic conductor: |
1.17492 |
Root analytic conductor: |
1.17492 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ253(153,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 253, (0: ), 0.294+0.955i)
|
Particular Values
L(21) |
≈ |
1.518565434+1.120628394i |
L(21) |
≈ |
1.518565434+1.120628394i |
L(1) |
≈ |
1.467413110+0.6354064129i |
L(1) |
≈ |
1.467413110+0.6354064129i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
| 23 | 1 |
good | 2 | 1+(0.959+0.281i)T |
| 3 | 1+(−0.654+0.755i)T |
| 5 | 1+(0.142−0.989i)T |
| 7 | 1+(0.415+0.909i)T |
| 13 | 1+(−0.415+0.909i)T |
| 17 | 1+(0.841−0.540i)T |
| 19 | 1+(0.841+0.540i)T |
| 29 | 1+(−0.841+0.540i)T |
| 31 | 1+(−0.654−0.755i)T |
| 37 | 1+(0.142+0.989i)T |
| 41 | 1+(0.142−0.989i)T |
| 43 | 1+(−0.654+0.755i)T |
| 47 | 1+T |
| 53 | 1+(−0.415−0.909i)T |
| 59 | 1+(0.415−0.909i)T |
| 61 | 1+(−0.654−0.755i)T |
| 67 | 1+(0.959+0.281i)T |
| 71 | 1+(−0.959−0.281i)T |
| 73 | 1+(−0.841−0.540i)T |
| 79 | 1+(0.415−0.909i)T |
| 83 | 1+(−0.142−0.989i)T |
| 89 | 1+(0.654−0.755i)T |
| 97 | 1+(0.142−0.989i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.49654662305834166872256094247, −24.647589440914537134947581873893, −23.671743856484341925956053332398, −23.086488140850560861724509792763, −22.32475335122147444981766446608, −21.53271133853169758057520371565, −20.240387250216910251134372954925, −19.46433785491248547631374160719, −18.42531073696500477697988862107, −17.50682075842064125659090878743, −16.51822866530151385716250182657, −15.19181922025483584336198474925, −14.27053308525521776643571954155, −13.53520568680899064543073990377, −12.591994709077051378374734966718, −11.536547143937781816936630816271, −10.76433541757193867143260898562, −10.08242965383493233408392805596, −7.61039204066175611186117596429, −7.22785704655945458470403187567, −6.00177761899474598818851178145, −5.17744509894607981064640504726, −3.72421989073810963797049590938, −2.53853954883177238440691759310, −1.20830485021642298930303671689,
1.76977074649753253836895256235, 3.41909327144299864150473518598, 4.6494651542419042042281027708, 5.29012581478281540528782650343, 6.05464972217885321236075290809, 7.55706604896969231257376224938, 8.88195383875025592205994531565, 9.82262727674900022444257658480, 11.42500143859673835346879508745, 11.92107197507140494561135078595, 12.740588788012729447877754691434, 14.11533933806990876138124925767, 14.94265084143991595478279636333, 16.00954391189289529885125902080, 16.535585641169397446682992374335, 17.39019964824289661783429913107, 18.69084970572887079280497810742, 20.37899592098850025298873923486, 20.83949917509579042098174765772, 21.74915557526499918351580268042, 22.3169692709294928079552245071, 23.51461239881694044229587839399, 24.18197368033674218360378232873, 24.99950575434004372932874087951, 25.99074758743120425264387832732