L(s) = 1 | + (−0.921 + 0.389i)2-s + (−0.998 + 0.0570i)3-s + (0.696 − 0.717i)4-s + (0.993 + 0.113i)5-s + (0.897 − 0.441i)6-s + (0.610 + 0.791i)7-s + (−0.362 + 0.931i)8-s + (0.993 − 0.113i)9-s + (−0.959 + 0.281i)10-s + (−0.654 + 0.755i)12-s + (−0.0285 + 0.999i)13-s + (−0.870 − 0.491i)14-s + (−0.998 − 0.0570i)15-s + (−0.0285 − 0.999i)16-s + (0.897 − 0.441i)17-s + (−0.870 + 0.491i)18-s + ⋯ |
L(s) = 1 | + (−0.921 + 0.389i)2-s + (−0.998 + 0.0570i)3-s + (0.696 − 0.717i)4-s + (0.993 + 0.113i)5-s + (0.897 − 0.441i)6-s + (0.610 + 0.791i)7-s + (−0.362 + 0.931i)8-s + (0.993 − 0.113i)9-s + (−0.959 + 0.281i)10-s + (−0.654 + 0.755i)12-s + (−0.0285 + 0.999i)13-s + (−0.870 − 0.491i)14-s + (−0.998 − 0.0570i)15-s + (−0.0285 − 0.999i)16-s + (0.897 − 0.441i)17-s + (−0.870 + 0.491i)18-s + ⋯ |
Λ(s)=(=(253s/2ΓR(s)L(s)(0.465+0.885i)Λ(1−s)
Λ(s)=(=(253s/2ΓR(s)L(s)(0.465+0.885i)Λ(1−s)
Degree: |
1 |
Conductor: |
253
= 11⋅23
|
Sign: |
0.465+0.885i
|
Analytic conductor: |
1.17492 |
Root analytic conductor: |
1.17492 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ253(190,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 253, (0: ), 0.465+0.885i)
|
Particular Values
L(21) |
≈ |
0.6446530228+0.3893052970i |
L(21) |
≈ |
0.6446530228+0.3893052970i |
L(1) |
≈ |
0.6668363427+0.2139898512i |
L(1) |
≈ |
0.6668363427+0.2139898512i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
| 23 | 1 |
good | 2 | 1+(−0.921+0.389i)T |
| 3 | 1+(−0.998+0.0570i)T |
| 5 | 1+(0.993+0.113i)T |
| 7 | 1+(0.610+0.791i)T |
| 13 | 1+(−0.0285+0.999i)T |
| 17 | 1+(0.897−0.441i)T |
| 19 | 1+(−0.466−0.884i)T |
| 29 | 1+(−0.466+0.884i)T |
| 31 | 1+(−0.254−0.967i)T |
| 37 | 1+(0.198−0.980i)T |
| 41 | 1+(0.198+0.980i)T |
| 43 | 1+(0.841+0.540i)T |
| 47 | 1+(−0.809+0.587i)T |
| 53 | 1+(−0.564+0.825i)T |
| 59 | 1+(0.941+0.336i)T |
| 61 | 1+(0.774+0.633i)T |
| 67 | 1+(−0.654−0.755i)T |
| 71 | 1+(0.516−0.856i)T |
| 73 | 1+(0.696−0.717i)T |
| 79 | 1+(−0.0285+0.999i)T |
| 83 | 1+(−0.736+0.676i)T |
| 89 | 1+(0.841+0.540i)T |
| 97 | 1+(−0.736−0.676i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.888849320685071630914942831367, −25.03070895052609995516501255490, −24.15495315280666053786746036049, −23.02550533664735156398727244974, −21.98950459240493024138515845935, −21.03423777546311862474394678573, −20.54153156682120736381008072157, −19.115004375342911086311827101740, −18.19671967417773950461834644185, −17.33553491077276937161769014955, −17.0536463544787581914572401000, −16.01246306589000329652400332701, −14.59928437229529254964409029902, −13.17955569704745210679942170148, −12.42159360112749746555502445115, −11.270330733740182381118097088714, −10.263456888338624957353469542647, −10.02603024361994338244477086462, −8.38298102023295623697068736860, −7.39792872062527102292212786065, −6.25667668556855500535856266608, −5.24692233816693254973166584524, −3.71442726266321528918106737505, −1.93410017212904779394127864515, −0.95192855803402492241991858267,
1.326606203733073318433203637191, 2.38234839020562137559217924267, 4.816004140850889986260318738376, 5.69623644166663986130008143005, 6.48740815209270357695896613807, 7.56133816836855943278822810223, 9.07465482815838510216180866459, 9.64359660417335034371247477250, 10.884782135621324436209674516069, 11.50156377310361712132281714571, 12.69158467687164392671037769675, 14.19850737770905733849406645428, 15.06004066926254699039952137241, 16.27558302369651746423092665918, 16.90336795109191931658756798956, 17.8966331183990370561546444492, 18.323931114482367636501017385463, 19.263870903970716383999968064828, 20.9168311102643377713805281144, 21.41191770857151429485018384312, 22.454193347897674995948559464562, 23.7633576871042418311774471370, 24.34075473845060576853601554514, 25.29349136161020818579784549433, 26.12920786245273366331468665210