L(s) = 1 | + (0.516 + 0.856i)2-s + (0.202 + 0.979i)3-s + (−0.465 + 0.885i)4-s + (−0.0270 − 0.999i)5-s + (−0.733 + 0.679i)6-s + (0.934 − 0.355i)7-s + (−0.998 + 0.0589i)8-s + (−0.917 + 0.396i)9-s + (0.841 − 0.539i)10-s + (0.0172 + 0.999i)11-s + (−0.960 − 0.276i)12-s + (0.163 + 0.986i)13-s + (0.787 + 0.616i)14-s + (0.973 − 0.229i)15-s + (−0.566 − 0.824i)16-s + (0.905 + 0.423i)17-s + ⋯ |
L(s) = 1 | + (0.516 + 0.856i)2-s + (0.202 + 0.979i)3-s + (−0.465 + 0.885i)4-s + (−0.0270 − 0.999i)5-s + (−0.733 + 0.679i)6-s + (0.934 − 0.355i)7-s + (−0.998 + 0.0589i)8-s + (−0.917 + 0.396i)9-s + (0.841 − 0.539i)10-s + (0.0172 + 0.999i)11-s + (−0.960 − 0.276i)12-s + (0.163 + 0.986i)13-s + (0.787 + 0.616i)14-s + (0.973 − 0.229i)15-s + (−0.566 − 0.824i)16-s + (0.905 + 0.423i)17-s + ⋯ |
Λ(s)=(=(2557s/2ΓR(s)L(s)(−0.995+0.0946i)Λ(1−s)
Λ(s)=(=(2557s/2ΓR(s)L(s)(−0.995+0.0946i)Λ(1−s)
Degree: |
1 |
Conductor: |
2557
|
Sign: |
−0.995+0.0946i
|
Analytic conductor: |
11.8746 |
Root analytic conductor: |
11.8746 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2557(1082,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2557, (0: ), −0.995+0.0946i)
|
Particular Values
L(21) |
≈ |
0.1066920736+2.249234813i |
L(21) |
≈ |
0.1066920736+2.249234813i |
L(1) |
≈ |
0.9733746926+1.105392873i |
L(1) |
≈ |
0.9733746926+1.105392873i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2557 | 1 |
good | 2 | 1+(0.516+0.856i)T |
| 3 | 1+(0.202+0.979i)T |
| 5 | 1+(−0.0270−0.999i)T |
| 7 | 1+(0.934−0.355i)T |
| 11 | 1+(0.0172+0.999i)T |
| 13 | 1+(0.163+0.986i)T |
| 17 | 1+(0.905+0.423i)T |
| 19 | 1+(0.836+0.548i)T |
| 23 | 1+(−0.999+0.0245i)T |
| 29 | 1+(0.998+0.0491i)T |
| 31 | 1+(0.245−0.969i)T |
| 37 | 1+(−0.756−0.654i)T |
| 41 | 1+(0.997+0.0638i)T |
| 43 | 1+(0.274+0.961i)T |
| 47 | 1+(−0.163+0.986i)T |
| 53 | 1+(−0.598+0.801i)T |
| 59 | 1+(0.670−0.741i)T |
| 61 | 1+(−0.883+0.467i)T |
| 67 | 1+(0.998−0.0540i)T |
| 71 | 1+(0.0761+0.997i)T |
| 73 | 1+(−0.988+0.151i)T |
| 79 | 1+(0.367+0.930i)T |
| 83 | 1+(0.659−0.751i)T |
| 89 | 1+(−0.307−0.951i)T |
| 97 | 1+(−0.311+0.950i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.17701865799397656576467519828, −18.29429405637291738760374253925, −18.07744595398568984500344713343, −17.45253383277018584235485997281, −15.97647026735129086483973917156, −15.2005711757690966807666857509, −14.44076539704694328493337318698, −13.84295662509813640795614766543, −13.650491937154669808331586940017, −12.355729076102819543309735861696, −11.94693121081454265721653534748, −11.2767034251308237218185334555, −10.639608844262441026700704334736, −9.86303175698104764834500008939, −8.71251221643045842775964705762, −8.13957576529438525971287904292, −7.31716267914258192142918629696, −6.33211872734800415499871234826, −5.65784366251507432278720997114, −5.05204417293132849087199806883, −3.59841624594276677658939693182, −3.06137040788905662930061275362, −2.44163395320884842845677303249, −1.468975824374253172778990122460, −0.614283226740866112759904214510,
1.29003195375039059969673160322, 2.3945976457681149595933455192, 3.7423432169552495349104259087, 4.249959109626891944356653827791, 4.755206109380332787607709035566, 5.486896563720161115863677368528, 6.22505160475578949120902147698, 7.624009789175606437188683828949, 7.891652519323330593881634937072, 8.73889969877929577172921426184, 9.502987580526064391197975798047, 10.04385636683402778815850207810, 11.297069839840292138516974425641, 11.98542429627705266103294062155, 12.55327676700036561239802311763, 13.67184842317051046511470112078, 14.288815196370343863131409631304, 14.59628111938371172806353546639, 15.68664746748189805278267398068, 16.06904751082411247815380531029, 16.748134682182107347386582303093, 17.392310305549254939824751891621, 17.872414856704189065358838697375, 19.081466898168795441777549452413, 20.18678747793944096715175507915