Properties

Label 1-2557-2557.1082-r0-0-0
Degree 11
Conductor 25572557
Sign 0.995+0.0946i-0.995 + 0.0946i
Analytic cond. 11.874611.8746
Root an. cond. 11.874611.8746
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.516 + 0.856i)2-s + (0.202 + 0.979i)3-s + (−0.465 + 0.885i)4-s + (−0.0270 − 0.999i)5-s + (−0.733 + 0.679i)6-s + (0.934 − 0.355i)7-s + (−0.998 + 0.0589i)8-s + (−0.917 + 0.396i)9-s + (0.841 − 0.539i)10-s + (0.0172 + 0.999i)11-s + (−0.960 − 0.276i)12-s + (0.163 + 0.986i)13-s + (0.787 + 0.616i)14-s + (0.973 − 0.229i)15-s + (−0.566 − 0.824i)16-s + (0.905 + 0.423i)17-s + ⋯
L(s)  = 1  + (0.516 + 0.856i)2-s + (0.202 + 0.979i)3-s + (−0.465 + 0.885i)4-s + (−0.0270 − 0.999i)5-s + (−0.733 + 0.679i)6-s + (0.934 − 0.355i)7-s + (−0.998 + 0.0589i)8-s + (−0.917 + 0.396i)9-s + (0.841 − 0.539i)10-s + (0.0172 + 0.999i)11-s + (−0.960 − 0.276i)12-s + (0.163 + 0.986i)13-s + (0.787 + 0.616i)14-s + (0.973 − 0.229i)15-s + (−0.566 − 0.824i)16-s + (0.905 + 0.423i)17-s + ⋯

Functional equation

Λ(s)=(2557s/2ΓR(s)L(s)=((0.995+0.0946i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2557 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.995 + 0.0946i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(2557s/2ΓR(s)L(s)=((0.995+0.0946i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2557 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.995 + 0.0946i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 25572557
Sign: 0.995+0.0946i-0.995 + 0.0946i
Analytic conductor: 11.874611.8746
Root analytic conductor: 11.874611.8746
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ2557(1082,)\chi_{2557} (1082, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 2557, (0: ), 0.995+0.0946i)(1,\ 2557,\ (0:\ ),\ -0.995 + 0.0946i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.1066920736+2.249234813i0.1066920736 + 2.249234813i
L(12)L(\frac12) \approx 0.1066920736+2.249234813i0.1066920736 + 2.249234813i
L(1)L(1) \approx 0.9733746926+1.105392873i0.9733746926 + 1.105392873i
L(1)L(1) \approx 0.9733746926+1.105392873i0.9733746926 + 1.105392873i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2557 1 1
good2 1+(0.516+0.856i)T 1 + (0.516 + 0.856i)T
3 1+(0.202+0.979i)T 1 + (0.202 + 0.979i)T
5 1+(0.02700.999i)T 1 + (-0.0270 - 0.999i)T
7 1+(0.9340.355i)T 1 + (0.934 - 0.355i)T
11 1+(0.0172+0.999i)T 1 + (0.0172 + 0.999i)T
13 1+(0.163+0.986i)T 1 + (0.163 + 0.986i)T
17 1+(0.905+0.423i)T 1 + (0.905 + 0.423i)T
19 1+(0.836+0.548i)T 1 + (0.836 + 0.548i)T
23 1+(0.999+0.0245i)T 1 + (-0.999 + 0.0245i)T
29 1+(0.998+0.0491i)T 1 + (0.998 + 0.0491i)T
31 1+(0.2450.969i)T 1 + (0.245 - 0.969i)T
37 1+(0.7560.654i)T 1 + (-0.756 - 0.654i)T
41 1+(0.997+0.0638i)T 1 + (0.997 + 0.0638i)T
43 1+(0.274+0.961i)T 1 + (0.274 + 0.961i)T
47 1+(0.163+0.986i)T 1 + (-0.163 + 0.986i)T
53 1+(0.598+0.801i)T 1 + (-0.598 + 0.801i)T
59 1+(0.6700.741i)T 1 + (0.670 - 0.741i)T
61 1+(0.883+0.467i)T 1 + (-0.883 + 0.467i)T
67 1+(0.9980.0540i)T 1 + (0.998 - 0.0540i)T
71 1+(0.0761+0.997i)T 1 + (0.0761 + 0.997i)T
73 1+(0.988+0.151i)T 1 + (-0.988 + 0.151i)T
79 1+(0.367+0.930i)T 1 + (0.367 + 0.930i)T
83 1+(0.6590.751i)T 1 + (0.659 - 0.751i)T
89 1+(0.3070.951i)T 1 + (-0.307 - 0.951i)T
97 1+(0.311+0.950i)T 1 + (-0.311 + 0.950i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−19.17701865799397656576467519828, −18.29429405637291738760374253925, −18.07744595398568984500344713343, −17.45253383277018584235485997281, −15.97647026735129086483973917156, −15.2005711757690966807666857509, −14.44076539704694328493337318698, −13.84295662509813640795614766543, −13.650491937154669808331586940017, −12.355729076102819543309735861696, −11.94693121081454265721653534748, −11.2767034251308237218185334555, −10.639608844262441026700704334736, −9.86303175698104764834500008939, −8.71251221643045842775964705762, −8.13957576529438525971287904292, −7.31716267914258192142918629696, −6.33211872734800415499871234826, −5.65784366251507432278720997114, −5.05204417293132849087199806883, −3.59841624594276677658939693182, −3.06137040788905662930061275362, −2.44163395320884842845677303249, −1.468975824374253172778990122460, −0.614283226740866112759904214510, 1.29003195375039059969673160322, 2.3945976457681149595933455192, 3.7423432169552495349104259087, 4.249959109626891944356653827791, 4.755206109380332787607709035566, 5.486896563720161115863677368528, 6.22505160475578949120902147698, 7.624009789175606437188683828949, 7.891652519323330593881634937072, 8.73889969877929577172921426184, 9.502987580526064391197975798047, 10.04385636683402778815850207810, 11.297069839840292138516974425641, 11.98542429627705266103294062155, 12.55327676700036561239802311763, 13.67184842317051046511470112078, 14.288815196370343863131409631304, 14.59628111938371172806353546639, 15.68664746748189805278267398068, 16.06904751082411247815380531029, 16.748134682182107347386582303093, 17.392310305549254939824751891621, 17.872414856704189065358838697375, 19.081466898168795441777549452413, 20.18678747793944096715175507915

Graph of the ZZ-function along the critical line