Properties

Label 1-260-260.199-r1-0-0
Degree 11
Conductor 260260
Sign 0.872+0.488i-0.872 + 0.488i
Analytic cond. 27.940827.9408
Root an. cond. 27.940827.9408
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)3-s + (0.5 − 0.866i)7-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)11-s + (0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s − 21-s + (−0.5 − 0.866i)23-s + 27-s + (−0.5 − 0.866i)29-s + 31-s + (−0.5 + 0.866i)33-s + (−0.5 − 0.866i)37-s + (0.5 + 0.866i)41-s + (−0.5 + 0.866i)43-s + ⋯
L(s)  = 1  + (−0.5 − 0.866i)3-s + (0.5 − 0.866i)7-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)11-s + (0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s − 21-s + (−0.5 − 0.866i)23-s + 27-s + (−0.5 − 0.866i)29-s + 31-s + (−0.5 + 0.866i)33-s + (−0.5 − 0.866i)37-s + (0.5 + 0.866i)41-s + (−0.5 + 0.866i)43-s + ⋯

Functional equation

Λ(s)=(260s/2ΓR(s+1)L(s)=((0.872+0.488i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.872 + 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(260s/2ΓR(s+1)L(s)=((0.872+0.488i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.872 + 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 260260    =    225132^{2} \cdot 5 \cdot 13
Sign: 0.872+0.488i-0.872 + 0.488i
Analytic conductor: 27.940827.9408
Root analytic conductor: 27.940827.9408
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ260(199,)\chi_{260} (199, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 260, (1: ), 0.872+0.488i)(1,\ 260,\ (1:\ ),\ -0.872 + 0.488i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.15235522960.5835382032i-0.1523552296 - 0.5835382032i
L(12)L(\frac12) \approx 0.15235522960.5835382032i-0.1523552296 - 0.5835382032i
L(1)L(1) \approx 0.67986369590.3809798232i0.6798636959 - 0.3809798232i
L(1)L(1) \approx 0.67986369590.3809798232i0.6798636959 - 0.3809798232i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
13 1 1
good3 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
7 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
11 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
17 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
19 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
23 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
29 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
31 1+T 1 + T
37 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
41 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
43 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
47 1T 1 - T
53 1T 1 - T
59 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
61 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
67 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
71 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
73 1+T 1 + T
79 1T 1 - T
83 1T 1 - T
89 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
97 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−26.04874018034103215118871095450, −25.60450398746883568268317392906, −24.16492385648550905977124712499, −23.44600050534408803396817393610, −22.39209679865342044391604005221, −21.59242420383886086491001460891, −20.95780757593298043284298841890, −19.9339466695050162641137960897, −18.68265175634180261050224401323, −17.66369365692374441842176590604, −17.07162185153835704186333552748, −15.63673328356745084901547048952, −15.31153744125686468248638316723, −14.2815195490394942637969163722, −12.753023066073002914499078382811, −11.92405027641570673500938394905, −10.946714312595929038830047046302, −10.00583930843996880540097511233, −9.039239134686433173707545308537, −7.976221643211425112707194261075, −6.48760796247073842570276753882, −5.36863894835302847853239087018, −4.641225142731184130706699795099, −3.28770032081180768434747541368, −1.83444993313955710189602597387, 0.20593116045547772811276918329, 1.34312685120691394804881584135, 2.771848633028950678100265449203, 4.34633039606668098765945203172, 5.5588359260136902607218494205, 6.537693054544142320904438988848, 7.71628307264455985298500489192, 8.28888558035901104377953133556, 10.02850615530129226377404318078, 10.97561192112617959275976588016, 11.78437218431059236589076065037, 12.90102835129457714593993998332, 13.781144096575271275896096957052, 14.49634358617532637891611865679, 16.17126287554210636308150391101, 16.77919726225042222222529922977, 17.79632298776074252718782515488, 18.60311747040356251377175435852, 19.425452577794739641796219015805, 20.57083709984608607812608702767, 21.39093010316908048757721024011, 22.82793295638804362714338361845, 23.19858592744874922999903937723, 24.335737124544114219894248810899, 24.75557346196074694114000303510

Graph of the ZZ-function along the critical line