L(s) = 1 | + (−0.5 − 0.866i)3-s + (0.5 − 0.866i)7-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)11-s + (0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s − 21-s + (−0.5 − 0.866i)23-s + 27-s + (−0.5 − 0.866i)29-s + 31-s + (−0.5 + 0.866i)33-s + (−0.5 − 0.866i)37-s + (0.5 + 0.866i)41-s + (−0.5 + 0.866i)43-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)3-s + (0.5 − 0.866i)7-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)11-s + (0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s − 21-s + (−0.5 − 0.866i)23-s + 27-s + (−0.5 − 0.866i)29-s + 31-s + (−0.5 + 0.866i)33-s + (−0.5 − 0.866i)37-s + (0.5 + 0.866i)41-s + (−0.5 + 0.866i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.872 + 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.872 + 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.1523552296 - 0.5835382032i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.1523552296 - 0.5835382032i\) |
\(L(1)\) |
\(\approx\) |
\(0.6798636959 - 0.3809798232i\) |
\(L(1)\) |
\(\approx\) |
\(0.6798636959 - 0.3809798232i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (-0.5 - 0.866i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (-0.5 - 0.866i)T \) |
| 41 | \( 1 + (0.5 + 0.866i)T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.04874018034103215118871095450, −25.60450398746883568268317392906, −24.16492385648550905977124712499, −23.44600050534408803396817393610, −22.39209679865342044391604005221, −21.59242420383886086491001460891, −20.95780757593298043284298841890, −19.9339466695050162641137960897, −18.68265175634180261050224401323, −17.66369365692374441842176590604, −17.07162185153835704186333552748, −15.63673328356745084901547048952, −15.31153744125686468248638316723, −14.2815195490394942637969163722, −12.753023066073002914499078382811, −11.92405027641570673500938394905, −10.946714312595929038830047046302, −10.00583930843996880540097511233, −9.039239134686433173707545308537, −7.976221643211425112707194261075, −6.48760796247073842570276753882, −5.36863894835302847853239087018, −4.641225142731184130706699795099, −3.28770032081180768434747541368, −1.83444993313955710189602597387,
0.20593116045547772811276918329, 1.34312685120691394804881584135, 2.771848633028950678100265449203, 4.34633039606668098765945203172, 5.5588359260136902607218494205, 6.537693054544142320904438988848, 7.71628307264455985298500489192, 8.28888558035901104377953133556, 10.02850615530129226377404318078, 10.97561192112617959275976588016, 11.78437218431059236589076065037, 12.90102835129457714593993998332, 13.781144096575271275896096957052, 14.49634358617532637891611865679, 16.17126287554210636308150391101, 16.77919726225042222222529922977, 17.79632298776074252718782515488, 18.60311747040356251377175435852, 19.425452577794739641796219015805, 20.57083709984608607812608702767, 21.39093010316908048757721024011, 22.82793295638804362714338361845, 23.19858592744874922999903937723, 24.335737124544114219894248810899, 24.75557346196074694114000303510