L(s) = 1 | + (−0.5 − 0.866i)3-s + (0.5 − 0.866i)7-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)11-s + (0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s − 21-s + (−0.5 − 0.866i)23-s + 27-s + (−0.5 − 0.866i)29-s + 31-s + (−0.5 + 0.866i)33-s + (−0.5 − 0.866i)37-s + (0.5 + 0.866i)41-s + (−0.5 + 0.866i)43-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)3-s + (0.5 − 0.866i)7-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)11-s + (0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s − 21-s + (−0.5 − 0.866i)23-s + 27-s + (−0.5 − 0.866i)29-s + 31-s + (−0.5 + 0.866i)33-s + (−0.5 − 0.866i)37-s + (0.5 + 0.866i)41-s + (−0.5 + 0.866i)43-s + ⋯ |
Λ(s)=(=(260s/2ΓR(s+1)L(s)(−0.872+0.488i)Λ(1−s)
Λ(s)=(=(260s/2ΓR(s+1)L(s)(−0.872+0.488i)Λ(1−s)
Degree: |
1 |
Conductor: |
260
= 22⋅5⋅13
|
Sign: |
−0.872+0.488i
|
Analytic conductor: |
27.9408 |
Root analytic conductor: |
27.9408 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ260(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 260, (1: ), −0.872+0.488i)
|
Particular Values
L(21) |
≈ |
−0.1523552296−0.5835382032i |
L(21) |
≈ |
−0.1523552296−0.5835382032i |
L(1) |
≈ |
0.6798636959−0.3809798232i |
L(1) |
≈ |
0.6798636959−0.3809798232i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 13 | 1 |
good | 3 | 1+(−0.5−0.866i)T |
| 7 | 1+(0.5−0.866i)T |
| 11 | 1+(−0.5−0.866i)T |
| 17 | 1+(0.5−0.866i)T |
| 19 | 1+(−0.5+0.866i)T |
| 23 | 1+(−0.5−0.866i)T |
| 29 | 1+(−0.5−0.866i)T |
| 31 | 1+T |
| 37 | 1+(−0.5−0.866i)T |
| 41 | 1+(0.5+0.866i)T |
| 43 | 1+(−0.5+0.866i)T |
| 47 | 1−T |
| 53 | 1−T |
| 59 | 1+(−0.5+0.866i)T |
| 61 | 1+(−0.5+0.866i)T |
| 67 | 1+(0.5+0.866i)T |
| 71 | 1+(−0.5+0.866i)T |
| 73 | 1+T |
| 79 | 1−T |
| 83 | 1−T |
| 89 | 1+(0.5+0.866i)T |
| 97 | 1+(−0.5+0.866i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−26.04874018034103215118871095450, −25.60450398746883568268317392906, −24.16492385648550905977124712499, −23.44600050534408803396817393610, −22.39209679865342044391604005221, −21.59242420383886086491001460891, −20.95780757593298043284298841890, −19.9339466695050162641137960897, −18.68265175634180261050224401323, −17.66369365692374441842176590604, −17.07162185153835704186333552748, −15.63673328356745084901547048952, −15.31153744125686468248638316723, −14.2815195490394942637969163722, −12.753023066073002914499078382811, −11.92405027641570673500938394905, −10.946714312595929038830047046302, −10.00583930843996880540097511233, −9.039239134686433173707545308537, −7.976221643211425112707194261075, −6.48760796247073842570276753882, −5.36863894835302847853239087018, −4.641225142731184130706699795099, −3.28770032081180768434747541368, −1.83444993313955710189602597387,
0.20593116045547772811276918329, 1.34312685120691394804881584135, 2.771848633028950678100265449203, 4.34633039606668098765945203172, 5.5588359260136902607218494205, 6.537693054544142320904438988848, 7.71628307264455985298500489192, 8.28888558035901104377953133556, 10.02850615530129226377404318078, 10.97561192112617959275976588016, 11.78437218431059236589076065037, 12.90102835129457714593993998332, 13.781144096575271275896096957052, 14.49634358617532637891611865679, 16.17126287554210636308150391101, 16.77919726225042222222529922977, 17.79632298776074252718782515488, 18.60311747040356251377175435852, 19.425452577794739641796219015805, 20.57083709984608607812608702767, 21.39093010316908048757721024011, 22.82793295638804362714338361845, 23.19858592744874922999903937723, 24.335737124544114219894248810899, 24.75557346196074694114000303510