Properties

Label 1-260-260.219-r0-0-0
Degree 11
Conductor 260260
Sign 0.4660.884i-0.466 - 0.884i
Analytic cond. 1.207431.20743
Root an. cond. 1.207431.20743
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)3-s + (−0.866 + 0.5i)7-s + (−0.5 − 0.866i)9-s + (−0.866 − 0.5i)11-s + (−0.5 − 0.866i)17-s + (−0.866 + 0.5i)19-s i·21-s + (0.5 − 0.866i)23-s + 27-s + (−0.5 + 0.866i)29-s i·31-s + (0.866 − 0.5i)33-s + (−0.866 − 0.5i)37-s + (−0.866 − 0.5i)41-s + (0.5 + 0.866i)43-s + ⋯
L(s)  = 1  + (−0.5 + 0.866i)3-s + (−0.866 + 0.5i)7-s + (−0.5 − 0.866i)9-s + (−0.866 − 0.5i)11-s + (−0.5 − 0.866i)17-s + (−0.866 + 0.5i)19-s i·21-s + (0.5 − 0.866i)23-s + 27-s + (−0.5 + 0.866i)29-s i·31-s + (0.866 − 0.5i)33-s + (−0.866 − 0.5i)37-s + (−0.866 − 0.5i)41-s + (0.5 + 0.866i)43-s + ⋯

Functional equation

Λ(s)=(260s/2ΓR(s)L(s)=((0.4660.884i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.466 - 0.884i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(260s/2ΓR(s)L(s)=((0.4660.884i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.466 - 0.884i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 260260    =    225132^{2} \cdot 5 \cdot 13
Sign: 0.4660.884i-0.466 - 0.884i
Analytic conductor: 1.207431.20743
Root analytic conductor: 1.207431.20743
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ260(219,)\chi_{260} (219, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 260, (0: ), 0.4660.884i)(1,\ 260,\ (0:\ ),\ -0.466 - 0.884i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.079604967390.1319303693i0.07960496739 - 0.1319303693i
L(12)L(\frac12) \approx 0.079604967390.1319303693i0.07960496739 - 0.1319303693i
L(1)L(1) \approx 0.5691113059+0.09804384990i0.5691113059 + 0.09804384990i
L(1)L(1) \approx 0.5691113059+0.09804384990i0.5691113059 + 0.09804384990i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
13 1 1
good3 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
7 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
11 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
17 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
19 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
23 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
29 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
31 1iT 1 - iT
37 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
41 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
43 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
47 1iT 1 - iT
53 1T 1 - T
59 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
61 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
67 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
71 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
73 1+iT 1 + iT
79 1T 1 - T
83 1iT 1 - iT
89 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
97 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−25.87384558202553337550336599149, −25.46248652983291924847545405428, −24.100035175414034263087064579495, −23.51285156404405833963041914067, −22.754932335798813698767079177268, −21.811589784154823836181491169364, −20.581101877652448890041476192690, −19.44679153639445324228445715052, −19.00600650177049555996906506011, −17.68928148362796963898589564762, −17.18316686725067969210165300977, −16.04381289690027853631621135088, −15.07129719260820927851359979762, −13.54298764888125064928633340285, −13.0836561026300271569279011065, −12.197213306692703620028950637454, −10.93604000730196377837836894782, −10.19046717722065489638443614659, −8.76460928935189006071499609208, −7.562347640728976261630758360020, −6.76340252065107718334852347715, −5.79394797871571693578748968625, −4.52394518210055813828168969324, −2.983601803451774352067748785412, −1.682683313410262093915212175358, 0.10687052407198912602506435249, 2.55426410527838404516915340327, 3.6211068822902968404704388328, 4.92126635656320587641126068241, 5.839986690326958168353329160174, 6.840300134599560837357917055681, 8.479196533899244241779588382154, 9.34750525599006963371791236829, 10.35665898517963985148188222375, 11.158329084798259220996863394235, 12.32008950283873085076666210756, 13.20683645993651302497313810378, 14.5660347206380834881171589274, 15.5520714239741575352247095009, 16.19976083337000478137909158358, 17.00577460507199556941753567101, 18.26239684911887171506760633885, 19.0035746799212549341798883222, 20.32857311652906560501253144339, 21.08070931530918711598039223900, 22.03587539711765308081826981801, 22.69971499242905284220972367722, 23.55772006214636122808727004951, 24.71152386490743251430196499714, 25.83254112138581465227873112478

Graph of the ZZ-function along the critical line