L(s) = 1 | + (−0.5 + 0.866i)3-s + (−0.866 + 0.5i)7-s + (−0.5 − 0.866i)9-s + (−0.866 − 0.5i)11-s + (−0.5 − 0.866i)17-s + (−0.866 + 0.5i)19-s − i·21-s + (0.5 − 0.866i)23-s + 27-s + (−0.5 + 0.866i)29-s − i·31-s + (0.866 − 0.5i)33-s + (−0.866 − 0.5i)37-s + (−0.866 − 0.5i)41-s + (0.5 + 0.866i)43-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)3-s + (−0.866 + 0.5i)7-s + (−0.5 − 0.866i)9-s + (−0.866 − 0.5i)11-s + (−0.5 − 0.866i)17-s + (−0.866 + 0.5i)19-s − i·21-s + (0.5 − 0.866i)23-s + 27-s + (−0.5 + 0.866i)29-s − i·31-s + (0.866 − 0.5i)33-s + (−0.866 − 0.5i)37-s + (−0.866 − 0.5i)41-s + (0.5 + 0.866i)43-s + ⋯ |
Λ(s)=(=(260s/2ΓR(s)L(s)(−0.466−0.884i)Λ(1−s)
Λ(s)=(=(260s/2ΓR(s)L(s)(−0.466−0.884i)Λ(1−s)
Degree: |
1 |
Conductor: |
260
= 22⋅5⋅13
|
Sign: |
−0.466−0.884i
|
Analytic conductor: |
1.20743 |
Root analytic conductor: |
1.20743 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ260(219,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 260, (0: ), −0.466−0.884i)
|
Particular Values
L(21) |
≈ |
0.07960496739−0.1319303693i |
L(21) |
≈ |
0.07960496739−0.1319303693i |
L(1) |
≈ |
0.5691113059+0.09804384990i |
L(1) |
≈ |
0.5691113059+0.09804384990i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 13 | 1 |
good | 3 | 1+(−0.5+0.866i)T |
| 7 | 1+(−0.866+0.5i)T |
| 11 | 1+(−0.866−0.5i)T |
| 17 | 1+(−0.5−0.866i)T |
| 19 | 1+(−0.866+0.5i)T |
| 23 | 1+(0.5−0.866i)T |
| 29 | 1+(−0.5+0.866i)T |
| 31 | 1−iT |
| 37 | 1+(−0.866−0.5i)T |
| 41 | 1+(−0.866−0.5i)T |
| 43 | 1+(0.5+0.866i)T |
| 47 | 1−iT |
| 53 | 1−T |
| 59 | 1+(0.866−0.5i)T |
| 61 | 1+(−0.5−0.866i)T |
| 67 | 1+(−0.866−0.5i)T |
| 71 | 1+(−0.866+0.5i)T |
| 73 | 1+iT |
| 79 | 1−T |
| 83 | 1−iT |
| 89 | 1+(0.866+0.5i)T |
| 97 | 1+(−0.866+0.5i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.87384558202553337550336599149, −25.46248652983291924847545405428, −24.100035175414034263087064579495, −23.51285156404405833963041914067, −22.754932335798813698767079177268, −21.811589784154823836181491169364, −20.581101877652448890041476192690, −19.44679153639445324228445715052, −19.00600650177049555996906506011, −17.68928148362796963898589564762, −17.18316686725067969210165300977, −16.04381289690027853631621135088, −15.07129719260820927851359979762, −13.54298764888125064928633340285, −13.0836561026300271569279011065, −12.197213306692703620028950637454, −10.93604000730196377837836894782, −10.19046717722065489638443614659, −8.76460928935189006071499609208, −7.562347640728976261630758360020, −6.76340252065107718334852347715, −5.79394797871571693578748968625, −4.52394518210055813828168969324, −2.983601803451774352067748785412, −1.682683313410262093915212175358,
0.10687052407198912602506435249, 2.55426410527838404516915340327, 3.6211068822902968404704388328, 4.92126635656320587641126068241, 5.839986690326958168353329160174, 6.840300134599560837357917055681, 8.479196533899244241779588382154, 9.34750525599006963371791236829, 10.35665898517963985148188222375, 11.158329084798259220996863394235, 12.32008950283873085076666210756, 13.20683645993651302497313810378, 14.5660347206380834881171589274, 15.5520714239741575352247095009, 16.19976083337000478137909158358, 17.00577460507199556941753567101, 18.26239684911887171506760633885, 19.0035746799212549341798883222, 20.32857311652906560501253144339, 21.08070931530918711598039223900, 22.03587539711765308081826981801, 22.69971499242905284220972367722, 23.55772006214636122808727004951, 24.71152386490743251430196499714, 25.83254112138581465227873112478