Properties

Label 1-260-260.43-r0-0-0
Degree 11
Conductor 260260
Sign 0.874+0.485i0.874 + 0.485i
Analytic cond. 1.207431.20743
Root an. cond. 1.207431.20743
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)3-s + (0.866 + 0.5i)7-s + (0.5 − 0.866i)9-s + (−0.5 − 0.866i)11-s + (0.866 + 0.5i)17-s + (0.5 − 0.866i)19-s − 21-s + (−0.866 + 0.5i)23-s i·27-s + (0.5 + 0.866i)29-s + 31-s + (0.866 + 0.5i)33-s + (0.866 − 0.5i)37-s + (0.5 + 0.866i)41-s + (0.866 + 0.5i)43-s + ⋯
L(s)  = 1  + (−0.866 + 0.5i)3-s + (0.866 + 0.5i)7-s + (0.5 − 0.866i)9-s + (−0.5 − 0.866i)11-s + (0.866 + 0.5i)17-s + (0.5 − 0.866i)19-s − 21-s + (−0.866 + 0.5i)23-s i·27-s + (0.5 + 0.866i)29-s + 31-s + (0.866 + 0.5i)33-s + (0.866 − 0.5i)37-s + (0.5 + 0.866i)41-s + (0.866 + 0.5i)43-s + ⋯

Functional equation

Λ(s)=(260s/2ΓR(s)L(s)=((0.874+0.485i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.874 + 0.485i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(260s/2ΓR(s)L(s)=((0.874+0.485i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.874 + 0.485i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 260260    =    225132^{2} \cdot 5 \cdot 13
Sign: 0.874+0.485i0.874 + 0.485i
Analytic conductor: 1.207431.20743
Root analytic conductor: 1.207431.20743
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ260(43,)\chi_{260} (43, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 260, (0: ), 0.874+0.485i)(1,\ 260,\ (0:\ ),\ 0.874 + 0.485i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.9784674069+0.2532061927i0.9784674069 + 0.2532061927i
L(12)L(\frac12) \approx 0.9784674069+0.2532061927i0.9784674069 + 0.2532061927i
L(1)L(1) \approx 0.9077892554+0.1442782781i0.9077892554 + 0.1442782781i
L(1)L(1) \approx 0.9077892554+0.1442782781i0.9077892554 + 0.1442782781i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
13 1 1
good3 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
7 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
11 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
17 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
19 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
23 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
29 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
31 1+T 1 + T
37 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
41 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
43 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
47 1iT 1 - iT
53 1+iT 1 + iT
59 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
61 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
67 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
71 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
73 1iT 1 - iT
79 1+T 1 + T
83 1iT 1 - iT
89 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
97 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−25.69913456806159381450227411418, −24.70536742159565297632520353199, −23.93656945146979434111970909802, −23.07785947295063932315205234472, −22.487845975055176344686989043921, −21.11577481517626341731309974676, −20.5082542166236833729444038816, −19.18149770729696465126208876305, −18.20118919721379238932032034851, −17.61327800099531850969888973293, −16.67935390136101261654790364586, −15.7389452318837831895162978378, −14.42314369861750074958692200923, −13.589249348355201714126000779290, −12.34130939828071595035973145623, −11.76619457758433848008631097603, −10.57792369036773387109031099303, −9.86537589203947134184724768944, −7.979590946791762763574337687877, −7.518690324482238121394641976671, −6.21316269307819146679988215911, −5.13622902033099253340118794419, −4.23372926085173032092404743981, −2.31030587592929068446473001728, −1.05148758242879048703436585891, 1.147608783590174361403319343733, 2.92847322527736990406610441591, 4.33844012288193807387749355922, 5.376057262575232269654230288, 6.08107366822137129154632221421, 7.584223053601555623999583691032, 8.66062801443701439788287227515, 9.84790313365915777564299920070, 10.884242360779648261713161157516, 11.59570493180116825473564882778, 12.50429477467068802034265277120, 13.82736206807413394617818030151, 14.908118687868812886603667484945, 15.826469531629766994691061758415, 16.60567330403616826958622392147, 17.75044922405493533555558864968, 18.256456726305331541223844120463, 19.474952982180512693871069381383, 20.807401710395696679911142044989, 21.53063864608709471749294988526, 22.06673275423665000814882093837, 23.40875710793788191975355533004, 23.917763135261806986054582338822, 24.88611246082565552647578245458, 26.21725085169859389049401282966

Graph of the ZZ-function along the critical line