L(s) = 1 | − i·3-s − 7-s − 9-s − i·11-s + i·17-s − i·19-s + i·21-s + i·23-s + i·27-s − 29-s + i·31-s − 33-s + 37-s − i·41-s + i·43-s + ⋯ |
L(s) = 1 | − i·3-s − 7-s − 9-s − i·11-s + i·17-s − i·19-s + i·21-s + i·23-s + i·27-s − 29-s + i·31-s − 33-s + 37-s − i·41-s + i·43-s + ⋯ |
Λ(s)=(=(260s/2ΓR(s+1)L(s)(0.256+0.966i)Λ(1−s)
Λ(s)=(=(260s/2ΓR(s+1)L(s)(0.256+0.966i)Λ(1−s)
Degree: |
1 |
Conductor: |
260
= 22⋅5⋅13
|
Sign: |
0.256+0.966i
|
Analytic conductor: |
27.9408 |
Root analytic conductor: |
27.9408 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ260(83,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 260, (1: ), 0.256+0.966i)
|
Particular Values
L(21) |
≈ |
0.4054398590+0.3118226147i |
L(21) |
≈ |
0.4054398590+0.3118226147i |
L(1) |
≈ |
0.7532252852−0.2000298488i |
L(1) |
≈ |
0.7532252852−0.2000298488i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 13 | 1 |
good | 3 | 1+T |
| 7 | 1−iT |
| 11 | 1 |
| 17 | 1 |
| 19 | 1−T |
| 23 | 1 |
| 29 | 1−T |
| 31 | 1 |
| 37 | 1−iT |
| 41 | 1 |
| 43 | 1 |
| 47 | 1 |
| 53 | 1 |
| 59 | 1 |
| 61 | 1+iT |
| 67 | 1 |
| 71 | 1−iT |
| 73 | 1 |
| 79 | 1+iT |
| 83 | 1 |
| 89 | 1+iT |
| 97 | 1 |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.60826569435650489433995771377, −24.83739295465349092652850947791, −23.263190507210647645455072356010, −22.642040096122393337520681799774, −22.01752912257398983660881706337, −20.62772882643711600109378880563, −20.33865305059036499167934825496, −19.09129000257841166656263878855, −18.05690851492317029413223081096, −16.75711372765336901834616516775, −16.27376443834304740097376426217, −15.2108878746913446084290978340, −14.46653171655395654820211206836, −13.19737232156118236215846646725, −12.177195126824324874950660455070, −11.08196171925004387602859659440, −9.79566855478933865569819500674, −9.60776711565450309740261198169, −8.18253692741828971004361260589, −6.85121112571692566540116203707, −5.71464267555651244338905571934, −4.55500271325078877596642601586, −3.55280816601168227470162632826, −2.37026760252154234653214757443, −0.172265469609425367360562419355,
1.158899915404866759701333510750, 2.66036022319062961477531739874, 3.66004198952386055150133297094, 5.536650501656135171677241753881, 6.346983433173707027007316696186, 7.30479724118214230361853201945, 8.44909474753992177307202315721, 9.37209550336481948426080208009, 10.7905674380200407084279169927, 11.70375224361985146276360266404, 12.91201301310202750303276073056, 13.32937283938456314964343438789, 14.43781595390516597278471146761, 15.66888303166841222380297641947, 16.68879041986803860056789460275, 17.55755622715303362838338514333, 18.631179005688829855986648319245, 19.41662887407576977936938630871, 19.917490799315540273403732621, 21.44473671018011723061992768597, 22.251808590249847627527924848437, 23.33058255172928072126302421590, 23.98239440508835589867032605797, 24.89535807356232202390833762020, 25.8535465002048766537612993166