L(s) = 1 | + (0.382 + 0.923i)5-s + (−0.991 + 0.130i)7-s + (0.793 − 0.608i)11-s + (−0.258 + 0.965i)19-s + (−0.793 + 0.608i)23-s + (−0.707 + 0.707i)25-s + (0.991 + 0.130i)29-s + (0.923 − 0.382i)31-s + (−0.5 − 0.866i)35-s + (−0.130 + 0.991i)37-s + (0.608 + 0.793i)41-s + (0.965 + 0.258i)43-s − i·47-s + (0.965 − 0.258i)49-s + (−0.707 − 0.707i)53-s + ⋯ |
L(s) = 1 | + (0.382 + 0.923i)5-s + (−0.991 + 0.130i)7-s + (0.793 − 0.608i)11-s + (−0.258 + 0.965i)19-s + (−0.793 + 0.608i)23-s + (−0.707 + 0.707i)25-s + (0.991 + 0.130i)29-s + (0.923 − 0.382i)31-s + (−0.5 − 0.866i)35-s + (−0.130 + 0.991i)37-s + (0.608 + 0.793i)41-s + (0.965 + 0.258i)43-s − i·47-s + (0.965 − 0.258i)49-s + (−0.707 − 0.707i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2652 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.840 + 0.541i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2652 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.840 + 0.541i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4197487021 + 1.426034953i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4197487021 + 1.426034953i\) |
\(L(1)\) |
\(\approx\) |
\(0.9781229660 + 0.2944174048i\) |
\(L(1)\) |
\(\approx\) |
\(0.9781229660 + 0.2944174048i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| 17 | \( 1 \) |
good | 5 | \( 1 + (0.382 + 0.923i)T \) |
| 7 | \( 1 + (-0.991 + 0.130i)T \) |
| 11 | \( 1 + (0.793 - 0.608i)T \) |
| 19 | \( 1 + (-0.258 + 0.965i)T \) |
| 23 | \( 1 + (-0.793 + 0.608i)T \) |
| 29 | \( 1 + (0.991 + 0.130i)T \) |
| 31 | \( 1 + (0.923 - 0.382i)T \) |
| 37 | \( 1 + (-0.130 + 0.991i)T \) |
| 41 | \( 1 + (0.608 + 0.793i)T \) |
| 43 | \( 1 + (0.965 + 0.258i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (-0.707 - 0.707i)T \) |
| 59 | \( 1 + (0.965 + 0.258i)T \) |
| 61 | \( 1 + (-0.991 + 0.130i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.793 - 0.608i)T \) |
| 73 | \( 1 + (-0.382 - 0.923i)T \) |
| 79 | \( 1 + (0.923 + 0.382i)T \) |
| 83 | \( 1 + (-0.707 - 0.707i)T \) |
| 89 | \( 1 + (0.866 + 0.5i)T \) |
| 97 | \( 1 + (0.608 - 0.793i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.14943529017215171461144769844, −17.890414995226999851841651596233, −17.44014936462869014162020454061, −16.81181523637003677543925566394, −15.867935323136193317586930911429, −15.716487838625904533900592276366, −14.41606287459808644454378074568, −13.87013094788824451603987547103, −13.07333552842349183446737426963, −12.36977872078218512177664006502, −12.05038015720129504079313498598, −10.81431427876218324353893079927, −10.08393691010274737231012777819, −9.31150201930935789290712863495, −8.94981979594930409331845080728, −7.97861648026047582147654303494, −6.98272937810770310833551974986, −6.339480715991104721545028656632, −5.644336883992699243324393679910, −4.483398567978237712978230427161, −4.187632989910046573629909650210, −2.93091932124531220587989698504, −2.126680187970077188717698079347, −1.04731265176656922548235883934, −0.28249288749659633628818599770,
0.992222098972732578481186904568, 2.049803342180077873125766046585, 3.00109629395805215679271735460, 3.52525004831393134750533593024, 4.41767641709613423481008905698, 5.7898361197320845564785712582, 6.18769424450956338784043968657, 6.76860306628629709434896811092, 7.728502092256102604518964926013, 8.572703087904781246984182780091, 9.50812934511415463587915894706, 10.027580083603000217550538664938, 10.664434855394660953292352571557, 11.68207333628929870774928714480, 12.11691377516409633922466903495, 13.21577994691050521459921349799, 13.74884492294468926904873839064, 14.44013129598091177913678021121, 15.119094198059400950577609856169, 15.98834607109985387057871318193, 16.53622971898261652948973729025, 17.395720247243251009516728484329, 18.03303376022229965218950356243, 18.93433436891792240633257629820, 19.248160004155800182192620928076