Properties

Label 1-2652-2652.107-r1-0-0
Degree 11
Conductor 26522652
Sign 0.157+0.987i0.157 + 0.987i
Analytic cond. 284.996284.996
Root an. cond. 284.996284.996
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.923 + 0.382i)5-s + (−0.793 − 0.608i)7-s + (−0.991 − 0.130i)11-s + (−0.965 − 0.258i)19-s + (0.991 + 0.130i)23-s + (0.707 + 0.707i)25-s + (0.793 − 0.608i)29-s + (−0.382 + 0.923i)31-s + (−0.5 − 0.866i)35-s + (−0.608 − 0.793i)37-s + (−0.130 + 0.991i)41-s + (0.258 − 0.965i)43-s i·47-s + (0.258 + 0.965i)49-s + (0.707 − 0.707i)53-s + ⋯
L(s)  = 1  + (0.923 + 0.382i)5-s + (−0.793 − 0.608i)7-s + (−0.991 − 0.130i)11-s + (−0.965 − 0.258i)19-s + (0.991 + 0.130i)23-s + (0.707 + 0.707i)25-s + (0.793 − 0.608i)29-s + (−0.382 + 0.923i)31-s + (−0.5 − 0.866i)35-s + (−0.608 − 0.793i)37-s + (−0.130 + 0.991i)41-s + (0.258 − 0.965i)43-s i·47-s + (0.258 + 0.965i)49-s + (0.707 − 0.707i)53-s + ⋯

Functional equation

Λ(s)=(2652s/2ΓR(s+1)L(s)=((0.157+0.987i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2652 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.157 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(2652s/2ΓR(s+1)L(s)=((0.157+0.987i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2652 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.157 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 26522652    =    22313172^{2} \cdot 3 \cdot 13 \cdot 17
Sign: 0.157+0.987i0.157 + 0.987i
Analytic conductor: 284.996284.996
Root analytic conductor: 284.996284.996
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ2652(107,)\chi_{2652} (107, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 2652, (1: ), 0.157+0.987i)(1,\ 2652,\ (1:\ ),\ 0.157 + 0.987i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.9799122441+0.8360376421i0.9799122441 + 0.8360376421i
L(12)L(\frac12) \approx 0.9799122441+0.8360376421i0.9799122441 + 0.8360376421i
L(1)L(1) \approx 0.9910196606+0.02224219668i0.9910196606 + 0.02224219668i
L(1)L(1) \approx 0.9910196606+0.02224219668i0.9910196606 + 0.02224219668i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
13 1 1
17 1 1
good5 1+(0.923+0.382i)T 1 + (0.923 + 0.382i)T
7 1+(0.7930.608i)T 1 + (-0.793 - 0.608i)T
11 1+(0.9910.130i)T 1 + (-0.991 - 0.130i)T
19 1+(0.9650.258i)T 1 + (-0.965 - 0.258i)T
23 1+(0.991+0.130i)T 1 + (0.991 + 0.130i)T
29 1+(0.7930.608i)T 1 + (0.793 - 0.608i)T
31 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
37 1+(0.6080.793i)T 1 + (-0.608 - 0.793i)T
41 1+(0.130+0.991i)T 1 + (-0.130 + 0.991i)T
43 1+(0.2580.965i)T 1 + (0.258 - 0.965i)T
47 1iT 1 - iT
53 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
59 1+(0.2580.965i)T 1 + (0.258 - 0.965i)T
61 1+(0.7930.608i)T 1 + (-0.793 - 0.608i)T
67 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
71 1+(0.9910.130i)T 1 + (0.991 - 0.130i)T
73 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
79 1+(0.3820.923i)T 1 + (-0.382 - 0.923i)T
83 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
89 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
97 1+(0.1300.991i)T 1 + (-0.130 - 0.991i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.84150672070764910797691695292, −18.36781413266783033124188585962, −17.597353833355692004831409809719, −16.77907895650265358520184151186, −16.32876152598601683447318867707, −15.34784089432228849459325386618, −14.92614268217798585159571212591, −13.78539873551663228798601156793, −13.26190861142683009261241496632, −12.62319993879396398294572741042, −12.10760103900973250433556724647, −10.84275607178794925745945204741, −10.31334755482153143688114197483, −9.57893182565259200884509708475, −8.85166335210955379933740642498, −8.285683290466740306487955590409, −7.11389362792809161390494995193, −6.41894785870351575443077023310, −5.62381980284666744066393885484, −5.10190578760549968443592211029, −4.10300427088721723589485770779, −2.879982383193453040671282041233, −2.44192834190759366866583938744, −1.42134752442667072913226313407, −0.25535844770289608711438280624, 0.73477510693113019208574361991, 1.88204027081675604460327164255, 2.762923194653584895240671436, 3.35463728518976891977413298512, 4.497076498176006038278767535782, 5.3101403739756620952277123320, 6.13780125112278629006668302615, 6.79436040357827377240674309172, 7.44230440969674882952015638725, 8.50912230830208484822836735114, 9.24953422898702365790432056934, 10.068940093756944904284167670480, 10.57059397377502004729436857511, 11.12313982553246067984723760478, 12.42184789563632189124521136166, 13.01969658043113426236011986329, 13.522544427742273808018776899330, 14.233556759411324804574875734252, 15.04007008386791274490902577719, 15.84534329536755317686679545418, 16.48612830330334186627769882027, 17.36785922057374191395419488747, 17.70365111781272853619001625288, 18.73617778898962956914204545477, 19.16261826999029050450236500543

Graph of the ZZ-function along the critical line