L(s) = 1 | + (0.923 + 0.382i)5-s + (−0.793 − 0.608i)7-s + (−0.991 − 0.130i)11-s + (−0.965 − 0.258i)19-s + (0.991 + 0.130i)23-s + (0.707 + 0.707i)25-s + (0.793 − 0.608i)29-s + (−0.382 + 0.923i)31-s + (−0.5 − 0.866i)35-s + (−0.608 − 0.793i)37-s + (−0.130 + 0.991i)41-s + (0.258 − 0.965i)43-s − i·47-s + (0.258 + 0.965i)49-s + (0.707 − 0.707i)53-s + ⋯ |
L(s) = 1 | + (0.923 + 0.382i)5-s + (−0.793 − 0.608i)7-s + (−0.991 − 0.130i)11-s + (−0.965 − 0.258i)19-s + (0.991 + 0.130i)23-s + (0.707 + 0.707i)25-s + (0.793 − 0.608i)29-s + (−0.382 + 0.923i)31-s + (−0.5 − 0.866i)35-s + (−0.608 − 0.793i)37-s + (−0.130 + 0.991i)41-s + (0.258 − 0.965i)43-s − i·47-s + (0.258 + 0.965i)49-s + (0.707 − 0.707i)53-s + ⋯ |
Λ(s)=(=(2652s/2ΓR(s+1)L(s)(0.157+0.987i)Λ(1−s)
Λ(s)=(=(2652s/2ΓR(s+1)L(s)(0.157+0.987i)Λ(1−s)
Degree: |
1 |
Conductor: |
2652
= 22⋅3⋅13⋅17
|
Sign: |
0.157+0.987i
|
Analytic conductor: |
284.996 |
Root analytic conductor: |
284.996 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2652(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2652, (1: ), 0.157+0.987i)
|
Particular Values
L(21) |
≈ |
0.9799122441+0.8360376421i |
L(21) |
≈ |
0.9799122441+0.8360376421i |
L(1) |
≈ |
0.9910196606+0.02224219668i |
L(1) |
≈ |
0.9910196606+0.02224219668i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1 |
| 17 | 1 |
good | 5 | 1+(0.923+0.382i)T |
| 7 | 1+(−0.793−0.608i)T |
| 11 | 1+(−0.991−0.130i)T |
| 19 | 1+(−0.965−0.258i)T |
| 23 | 1+(0.991+0.130i)T |
| 29 | 1+(0.793−0.608i)T |
| 31 | 1+(−0.382+0.923i)T |
| 37 | 1+(−0.608−0.793i)T |
| 41 | 1+(−0.130+0.991i)T |
| 43 | 1+(0.258−0.965i)T |
| 47 | 1−iT |
| 53 | 1+(0.707−0.707i)T |
| 59 | 1+(0.258−0.965i)T |
| 61 | 1+(−0.793−0.608i)T |
| 67 | 1+(−0.5+0.866i)T |
| 71 | 1+(0.991−0.130i)T |
| 73 | 1+(−0.923−0.382i)T |
| 79 | 1+(−0.382−0.923i)T |
| 83 | 1+(0.707−0.707i)T |
| 89 | 1+(−0.866−0.5i)T |
| 97 | 1+(−0.130−0.991i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.84150672070764910797691695292, −18.36781413266783033124188585962, −17.597353833355692004831409809719, −16.77907895650265358520184151186, −16.32876152598601683447318867707, −15.34784089432228849459325386618, −14.92614268217798585159571212591, −13.78539873551663228798601156793, −13.26190861142683009261241496632, −12.62319993879396398294572741042, −12.10760103900973250433556724647, −10.84275607178794925745945204741, −10.31334755482153143688114197483, −9.57893182565259200884509708475, −8.85166335210955379933740642498, −8.285683290466740306487955590409, −7.11389362792809161390494995193, −6.41894785870351575443077023310, −5.62381980284666744066393885484, −5.10190578760549968443592211029, −4.10300427088721723589485770779, −2.879982383193453040671282041233, −2.44192834190759366866583938744, −1.42134752442667072913226313407, −0.25535844770289608711438280624,
0.73477510693113019208574361991, 1.88204027081675604460327164255, 2.762923194653584895240671436, 3.35463728518976891977413298512, 4.497076498176006038278767535782, 5.3101403739756620952277123320, 6.13780125112278629006668302615, 6.79436040357827377240674309172, 7.44230440969674882952015638725, 8.50912230830208484822836735114, 9.24953422898702365790432056934, 10.068940093756944904284167670480, 10.57059397377502004729436857511, 11.12313982553246067984723760478, 12.42184789563632189124521136166, 13.01969658043113426236011986329, 13.522544427742273808018776899330, 14.233556759411324804574875734252, 15.04007008386791274490902577719, 15.84534329536755317686679545418, 16.48612830330334186627769882027, 17.36785922057374191395419488747, 17.70365111781272853619001625288, 18.73617778898962956914204545477, 19.16261826999029050450236500543