L(s) = 1 | + i·5-s + (0.866 + 0.5i)7-s + (0.866 − 0.5i)11-s + (0.866 + 0.5i)19-s + (−0.5 − 0.866i)23-s − 25-s + (−0.5 − 0.866i)29-s − i·31-s + (−0.5 + 0.866i)35-s + (0.866 − 0.5i)37-s + (0.866 − 0.5i)41-s + (−0.5 + 0.866i)43-s − i·47-s + (0.5 + 0.866i)49-s − 53-s + ⋯ |
L(s) = 1 | + i·5-s + (0.866 + 0.5i)7-s + (0.866 − 0.5i)11-s + (0.866 + 0.5i)19-s + (−0.5 − 0.866i)23-s − 25-s + (−0.5 − 0.866i)29-s − i·31-s + (−0.5 + 0.866i)35-s + (0.866 − 0.5i)37-s + (0.866 − 0.5i)41-s + (−0.5 + 0.866i)43-s − i·47-s + (0.5 + 0.866i)49-s − 53-s + ⋯ |
Λ(s)=(=(2652s/2ΓR(s+1)L(s)(0.477+0.878i)Λ(1−s)
Λ(s)=(=(2652s/2ΓR(s+1)L(s)(0.477+0.878i)Λ(1−s)
Degree: |
1 |
Conductor: |
2652
= 22⋅3⋅13⋅17
|
Sign: |
0.477+0.878i
|
Analytic conductor: |
284.996 |
Root analytic conductor: |
284.996 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2652(2243,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2652, (1: ), 0.477+0.878i)
|
Particular Values
L(21) |
≈ |
2.559593899+1.522122879i |
L(21) |
≈ |
2.559593899+1.522122879i |
L(1) |
≈ |
1.285611711+0.3055850345i |
L(1) |
≈ |
1.285611711+0.3055850345i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1 |
| 17 | 1 |
good | 5 | 1+iT |
| 7 | 1+(0.866+0.5i)T |
| 11 | 1+(0.866−0.5i)T |
| 19 | 1+(0.866+0.5i)T |
| 23 | 1+(−0.5−0.866i)T |
| 29 | 1+(−0.5−0.866i)T |
| 31 | 1−iT |
| 37 | 1+(0.866−0.5i)T |
| 41 | 1+(0.866−0.5i)T |
| 43 | 1+(−0.5+0.866i)T |
| 47 | 1−iT |
| 53 | 1−T |
| 59 | 1+(0.866+0.5i)T |
| 61 | 1+(0.5−0.866i)T |
| 67 | 1+(−0.866+0.5i)T |
| 71 | 1+(0.866+0.5i)T |
| 73 | 1+iT |
| 79 | 1+T |
| 83 | 1−iT |
| 89 | 1+(0.866−0.5i)T |
| 97 | 1+(0.866+0.5i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.197676035498589661645729492501, −18.02403292145593140850948337931, −17.65164192773858909194171559149, −16.896298571484268698088319890807, −16.37569119869470183077211761184, −15.48851731482063135288714815494, −14.74596421665856695183908985071, −14.01270059944897349998719312735, −13.35108174227407984144220030457, −12.624248527002606571945254267383, −11.64666261538788512689305820767, −11.46735471316232200117021186971, −10.31848214946515084392268575835, −9.39075772678598210074249907131, −9.07776247685553183713028731881, −7.87730734113956890706396120117, −7.62093906011517717976447776318, −6.532396928217930037658876151249, −5.574608791293535824360564256522, −4.836393567809420545750987575659, −4.23883246205766367009476443744, −3.42997285979465851678967926584, −2.04213718706056401295939311569, −1.36461004975215361383084936232, −0.61968459784728297088319886859,
0.80027070495741818022496391527, 1.84278391977088998950865673133, 2.597537116617167139766277069656, 3.535957432723143539679306751911, 4.24883505839736865250867867073, 5.33436282891229954840336319452, 6.04775303503131141354258328911, 6.73178275627681306581278006048, 7.66338493681011374052778533452, 8.24862851116774322878600579974, 9.14635161597833470266857890394, 9.912785559893336847917036357823, 10.7429345355325504542942127025, 11.470487973568385646498771457901, 11.835906052957041878306688899963, 12.792407351750736901015964075268, 13.918166942778748545826213946622, 14.335584932816147357403423465166, 14.81460827917059442132351190061, 15.689904119263256802465981281954, 16.407174643238154335730040618336, 17.289575465611871639903510774579, 18.020991801509162052662706651993, 18.45249639225064515605526829908, 19.18529115431603589321270035380