L(s) = 1 | + (0.342 + 0.939i)5-s + (0.173 − 0.984i)7-s + (0.5 − 0.866i)11-s + (0.984 + 0.173i)13-s + (0.342 − 0.939i)17-s + (0.984 + 0.173i)19-s + (0.866 − 0.5i)23-s + (−0.766 + 0.642i)25-s + (−0.866 − 0.5i)29-s + (−0.866 − 0.5i)31-s + (0.984 − 0.173i)35-s + (0.173 − 0.984i)41-s + (0.866 − 0.5i)43-s − 47-s + (−0.939 − 0.342i)49-s + ⋯ |
L(s) = 1 | + (0.342 + 0.939i)5-s + (0.173 − 0.984i)7-s + (0.5 − 0.866i)11-s + (0.984 + 0.173i)13-s + (0.342 − 0.939i)17-s + (0.984 + 0.173i)19-s + (0.866 − 0.5i)23-s + (−0.766 + 0.642i)25-s + (−0.866 − 0.5i)29-s + (−0.866 − 0.5i)31-s + (0.984 − 0.173i)35-s + (0.173 − 0.984i)41-s + (0.866 − 0.5i)43-s − 47-s + (−0.939 − 0.342i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.580 - 0.814i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.580 - 0.814i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.787046923 - 0.9209819060i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.787046923 - 0.9209819060i\) |
\(L(1)\) |
\(\approx\) |
\(1.266748816 - 0.1638616787i\) |
\(L(1)\) |
\(\approx\) |
\(1.266748816 - 0.1638616787i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 \) |
good | 5 | \( 1 + (0.342 + 0.939i)T \) |
| 7 | \( 1 + (0.173 - 0.984i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.984 + 0.173i)T \) |
| 17 | \( 1 + (0.342 - 0.939i)T \) |
| 19 | \( 1 + (0.984 + 0.173i)T \) |
| 23 | \( 1 + (0.866 - 0.5i)T \) |
| 29 | \( 1 + (-0.866 - 0.5i)T \) |
| 31 | \( 1 + (-0.866 - 0.5i)T \) |
| 41 | \( 1 + (0.173 - 0.984i)T \) |
| 43 | \( 1 + (0.866 - 0.5i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (0.766 - 0.642i)T \) |
| 59 | \( 1 + (0.984 - 0.173i)T \) |
| 61 | \( 1 + (0.642 - 0.766i)T \) |
| 67 | \( 1 + (-0.939 + 0.342i)T \) |
| 71 | \( 1 + (-0.173 + 0.984i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (-0.984 - 0.173i)T \) |
| 83 | \( 1 + (0.173 + 0.984i)T \) |
| 89 | \( 1 + (-0.642 - 0.766i)T \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.52509235190191143822643768867, −18.64350408337510424136261304220, −17.835262058971030677601383112942, −17.53105592396844917309568334416, −16.41068284037348856124638653423, −16.10095365609329026129711336975, −14.99979669114173616437490744887, −14.73099834735813099687370748934, −13.5401869511208129511844953047, −12.95255271862714015977815965166, −12.35928662663850941221966292312, −11.65356751286269128889043840505, −10.89468503145473923506637744420, −9.81835181811317629387615829928, −9.20518341851779447448152958118, −8.70533109146204004548694327002, −7.888757037633846076729405340197, −6.98606431753546536310906392658, −5.89158634056349430563134364341, −5.51270290274360306812294113970, −4.66684344678875691115167897648, −3.77457039121442837459546136306, −2.83514117553307943837729541150, −1.58949991617223102070881323201, −1.33464908362865461855691718704,
0.67173549718373974998255348774, 1.55889409917435191359413257201, 2.71279075005694890055165351182, 3.546481689796046377413064652649, 4.00855360358497443743768083010, 5.339290017495637292301806414004, 5.92843775746629074899377030610, 6.94817190555672716002224360662, 7.25887799296095361383359624348, 8.25051010051955787760978482709, 9.18402345040282907471496268507, 9.851417186507439671800710838170, 10.71902105452544246966028277813, 11.245126587514847676374840599571, 11.727263947105716431958996847135, 13.14091709903948739766057623078, 13.545550300108075140087242480455, 14.309199248583292654644590271118, 14.63237758934733041045029111749, 15.841076919448110921102940799532, 16.366660427100981182624792091617, 17.11756306317553354769745073832, 17.83248355531007965717114770039, 18.65036551958964657639245513354, 18.94928257615967752004089157037