L(s) = 1 | + (0.766 − 0.642i)5-s + (0.939 + 0.342i)7-s + (0.5 + 0.866i)11-s + (0.939 + 0.342i)13-s + (−0.766 − 0.642i)17-s + (−0.939 − 0.342i)19-s + (−0.5 + 0.866i)23-s + (0.173 − 0.984i)25-s + (−0.5 − 0.866i)29-s + (0.5 + 0.866i)31-s + (0.939 − 0.342i)35-s + (0.939 + 0.342i)41-s + (−0.5 + 0.866i)43-s + 47-s + (0.766 + 0.642i)49-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)5-s + (0.939 + 0.342i)7-s + (0.5 + 0.866i)11-s + (0.939 + 0.342i)13-s + (−0.766 − 0.642i)17-s + (−0.939 − 0.342i)19-s + (−0.5 + 0.866i)23-s + (0.173 − 0.984i)25-s + (−0.5 − 0.866i)29-s + (0.5 + 0.866i)31-s + (0.939 − 0.342i)35-s + (0.939 + 0.342i)41-s + (−0.5 + 0.866i)43-s + 47-s + (0.766 + 0.642i)49-s + ⋯ |
Λ(s)=(=(2664s/2ΓR(s)L(s)(0.999+0.0357i)Λ(1−s)
Λ(s)=(=(2664s/2ΓR(s)L(s)(0.999+0.0357i)Λ(1−s)
Degree: |
1 |
Conductor: |
2664
= 23⋅32⋅37
|
Sign: |
0.999+0.0357i
|
Analytic conductor: |
12.3715 |
Root analytic conductor: |
12.3715 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2664(1859,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2664, (0: ), 0.999+0.0357i)
|
Particular Values
L(21) |
≈ |
2.392152279+0.04271782808i |
L(21) |
≈ |
2.392152279+0.04271782808i |
L(1) |
≈ |
1.430523798+0.01860573153i |
L(1) |
≈ |
1.430523798+0.01860573153i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 37 | 1 |
good | 5 | 1+(0.766−0.642i)T |
| 7 | 1+(0.939+0.342i)T |
| 11 | 1+(0.5+0.866i)T |
| 13 | 1+(0.939+0.342i)T |
| 17 | 1+(−0.766−0.642i)T |
| 19 | 1+(−0.939−0.342i)T |
| 23 | 1+(−0.5+0.866i)T |
| 29 | 1+(−0.5−0.866i)T |
| 31 | 1+(0.5+0.866i)T |
| 41 | 1+(0.939+0.342i)T |
| 43 | 1+(−0.5+0.866i)T |
| 47 | 1+T |
| 53 | 1+(0.173−0.984i)T |
| 59 | 1+(0.939−0.342i)T |
| 61 | 1+(−0.173−0.984i)T |
| 67 | 1+(0.766−0.642i)T |
| 71 | 1+(−0.939−0.342i)T |
| 73 | 1+T |
| 79 | 1+(0.939+0.342i)T |
| 83 | 1+(0.939−0.342i)T |
| 89 | 1+(−0.173+0.984i)T |
| 97 | 1+T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.15043858515843142941910113442, −18.52331929443623928722902031120, −17.94719144478814647523542703611, −17.179930136113971894044559424917, −16.745136877798786527468923399302, −15.707829145359020088146656352931, −14.84448678839855499398364708001, −14.40493468851688741957341755213, −13.62579539137273890664979319109, −13.15674688754123945821900236295, −12.102269528546328871453932177068, −11.11872472050025675566398009713, −10.76376196754387411384999854742, −10.21190853927831212267899750898, −8.91793461739798059314073616809, −8.588103636713003095214873639733, −7.66937865663068258596240937323, −6.68792825477700395061764894919, −6.07549198687435835547086683603, −5.48206408328476479425284943073, −4.227970511272712815292074874323, −3.75111617271435468931306307790, −2.54898460251075227767607479091, −1.84443223832000627079631832038, −0.91149429770971107280422207751,
0.99179978507410560622506846202, 1.90689045077371807213009593852, 2.312634375967111346104029964873, 3.813256220965924111692506865077, 4.58581585863807446329918342799, 5.12665430007069753914878323136, 6.11816610248904854050883317279, 6.68618622754781369385212637976, 7.791236333288480496319959103717, 8.52719825008508309327062869133, 9.193206158799322862376308203855, 9.73525887578190566476039367167, 10.79574262963902480517593732848, 11.45361243777480271645742434095, 12.14576667261787547710554587153, 12.97849621741591984068374749852, 13.65003795071146721103751403959, 14.254607303845296201882695572797, 15.09991618171368015478374333538, 15.750911930600973155654752380389, 16.561406038771826109994660132281, 17.5430534225229291354323318062, 17.6447962849930270274758588952, 18.41092245181494536729815546848, 19.40814765454197565275351172165