L(s) = 1 | + (0.766 − 0.642i)5-s + (0.939 + 0.342i)7-s + (0.5 + 0.866i)11-s + (0.939 + 0.342i)13-s + (−0.766 − 0.642i)17-s + (−0.939 − 0.342i)19-s + (−0.5 + 0.866i)23-s + (0.173 − 0.984i)25-s + (−0.5 − 0.866i)29-s + (0.5 + 0.866i)31-s + (0.939 − 0.342i)35-s + (0.939 + 0.342i)41-s + (−0.5 + 0.866i)43-s + 47-s + (0.766 + 0.642i)49-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)5-s + (0.939 + 0.342i)7-s + (0.5 + 0.866i)11-s + (0.939 + 0.342i)13-s + (−0.766 − 0.642i)17-s + (−0.939 − 0.342i)19-s + (−0.5 + 0.866i)23-s + (0.173 − 0.984i)25-s + (−0.5 − 0.866i)29-s + (0.5 + 0.866i)31-s + (0.939 − 0.342i)35-s + (0.939 + 0.342i)41-s + (−0.5 + 0.866i)43-s + 47-s + (0.766 + 0.642i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0357i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0357i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.392152279 + 0.04271782808i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.392152279 + 0.04271782808i\) |
\(L(1)\) |
\(\approx\) |
\(1.430523798 + 0.01860573153i\) |
\(L(1)\) |
\(\approx\) |
\(1.430523798 + 0.01860573153i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 \) |
good | 5 | \( 1 + (0.766 - 0.642i)T \) |
| 7 | \( 1 + (0.939 + 0.342i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.939 + 0.342i)T \) |
| 17 | \( 1 + (-0.766 - 0.642i)T \) |
| 19 | \( 1 + (-0.939 - 0.342i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.5 - 0.866i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.939 + 0.342i)T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + (0.173 - 0.984i)T \) |
| 59 | \( 1 + (0.939 - 0.342i)T \) |
| 61 | \( 1 + (-0.173 - 0.984i)T \) |
| 67 | \( 1 + (0.766 - 0.642i)T \) |
| 71 | \( 1 + (-0.939 - 0.342i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + (0.939 + 0.342i)T \) |
| 83 | \( 1 + (0.939 - 0.342i)T \) |
| 89 | \( 1 + (-0.173 + 0.984i)T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.15043858515843142941910113442, −18.52331929443623928722902031120, −17.94719144478814647523542703611, −17.179930136113971894044559424917, −16.745136877798786527468923399302, −15.707829145359020088146656352931, −14.84448678839855499398364708001, −14.40493468851688741957341755213, −13.62579539137273890664979319109, −13.15674688754123945821900236295, −12.102269528546328871453932177068, −11.11872472050025675566398009713, −10.76376196754387411384999854742, −10.21190853927831212267899750898, −8.91793461739798059314073616809, −8.588103636713003095214873639733, −7.66937865663068258596240937323, −6.68792825477700395061764894919, −6.07549198687435835547086683603, −5.48206408328476479425284943073, −4.227970511272712815292074874323, −3.75111617271435468931306307790, −2.54898460251075227767607479091, −1.84443223832000627079631832038, −0.91149429770971107280422207751,
0.99179978507410560622506846202, 1.90689045077371807213009593852, 2.312634375967111346104029964873, 3.813256220965924111692506865077, 4.58581585863807446329918342799, 5.12665430007069753914878323136, 6.11816610248904854050883317279, 6.68618622754781369385212637976, 7.791236333288480496319959103717, 8.52719825008508309327062869133, 9.193206158799322862376308203855, 9.73525887578190566476039367167, 10.79574262963902480517593732848, 11.45361243777480271645742434095, 12.14576667261787547710554587153, 12.97849621741591984068374749852, 13.65003795071146721103751403959, 14.254607303845296201882695572797, 15.09991618171368015478374333538, 15.750911930600973155654752380389, 16.561406038771826109994660132281, 17.5430534225229291354323318062, 17.6447962849930270274758588952, 18.41092245181494536729815546848, 19.40814765454197565275351172165