L(s) = 1 | + (−0.984 + 0.173i)5-s + (−0.766 + 0.642i)7-s + (0.5 + 0.866i)11-s + (0.642 + 0.766i)13-s + (−0.984 − 0.173i)17-s + (−0.642 − 0.766i)19-s + (−0.866 − 0.5i)23-s + (0.939 − 0.342i)25-s + (−0.866 + 0.5i)29-s + (−0.866 + 0.5i)31-s + (0.642 − 0.766i)35-s + (−0.766 + 0.642i)41-s + (0.866 + 0.5i)43-s − 47-s + (0.173 − 0.984i)49-s + ⋯ |
L(s) = 1 | + (−0.984 + 0.173i)5-s + (−0.766 + 0.642i)7-s + (0.5 + 0.866i)11-s + (0.642 + 0.766i)13-s + (−0.984 − 0.173i)17-s + (−0.642 − 0.766i)19-s + (−0.866 − 0.5i)23-s + (0.939 − 0.342i)25-s + (−0.866 + 0.5i)29-s + (−0.866 + 0.5i)31-s + (0.642 − 0.766i)35-s + (−0.766 + 0.642i)41-s + (0.866 + 0.5i)43-s − 47-s + (0.173 − 0.984i)49-s + ⋯ |
Λ(s)=(=(2664s/2ΓR(s)L(s)(0.0403−0.999i)Λ(1−s)
Λ(s)=(=(2664s/2ΓR(s)L(s)(0.0403−0.999i)Λ(1−s)
Degree: |
1 |
Conductor: |
2664
= 23⋅32⋅37
|
Sign: |
0.0403−0.999i
|
Analytic conductor: |
12.3715 |
Root analytic conductor: |
12.3715 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2664(1939,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2664, (0: ), 0.0403−0.999i)
|
Particular Values
L(21) |
≈ |
0.1906315924−0.1830900671i |
L(21) |
≈ |
0.1906315924−0.1830900671i |
L(1) |
≈ |
0.6652864734+0.1192169928i |
L(1) |
≈ |
0.6652864734+0.1192169928i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 37 | 1 |
good | 5 | 1+(−0.984+0.173i)T |
| 7 | 1+(−0.766+0.642i)T |
| 11 | 1+(0.5+0.866i)T |
| 13 | 1+(0.642+0.766i)T |
| 17 | 1+(−0.984−0.173i)T |
| 19 | 1+(−0.642−0.766i)T |
| 23 | 1+(−0.866−0.5i)T |
| 29 | 1+(−0.866+0.5i)T |
| 31 | 1+(−0.866+0.5i)T |
| 41 | 1+(−0.766+0.642i)T |
| 43 | 1+(0.866+0.5i)T |
| 47 | 1−T |
| 53 | 1+(0.939−0.342i)T |
| 59 | 1+(0.642−0.766i)T |
| 61 | 1+(−0.342+0.939i)T |
| 67 | 1+(−0.173−0.984i)T |
| 71 | 1+(−0.766+0.642i)T |
| 73 | 1−T |
| 79 | 1+(0.642+0.766i)T |
| 83 | 1+(0.766+0.642i)T |
| 89 | 1+(−0.342−0.939i)T |
| 97 | 1−iT |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.30196957627077499001190654670, −19.12122215280164119180832183221, −18.13435880214390896334295403760, −17.24950627993961708792357320578, −16.49601401786174754985759019315, −16.078909843337441442088465218315, −15.31680928073547092905885950715, −14.65108006419085389678935752564, −13.56451707733912135922909954921, −13.19662438622820251868532421993, −12.34976257883610418630367086307, −11.566907960632719100597970319086, −10.8666313241651617362182927025, −10.30542114663319044235511646622, −9.22457179113628545408899132944, −8.57300221661232787318111601387, −7.84558202317239355321071441585, −7.12886960872548891176009240035, −6.207645346012846800791747341465, −5.65786333887696161458068040900, −4.30523627078687243288636197953, −3.76586470171044761088375467279, −3.302503271961096570159389601, −1.97401273652966934557481962617, −0.78806052481734039994646992731,
0.11060818215294227459983451383, 1.68744832914478069425175947281, 2.4970779106077098366783429031, 3.50305806785623551361229618730, 4.18061343167409313971879145875, 4.85837900150681045468471188972, 6.09036630103969039935185672972, 6.76503650965376221477159947140, 7.22409125396587814681540139000, 8.42648592452183451150096875710, 8.92324024886450142921329823005, 9.61166245736259204499387522154, 10.62473533734143486713255161077, 11.38053016461055637758759362213, 11.91268552466816847813899642681, 12.732298142473898146763019694383, 13.23065733262065286009399483815, 14.39206045500065669292248698420, 14.96232851631854106235256849726, 15.64565824910526742648966977947, 16.20859729029012916002802416599, 16.84173663828873345195793699339, 18.05045489722883003089868100804, 18.32507834273414531839290920979, 19.33795187642547868217535813690