L(s) = 1 | + (−0.430 − 0.902i)2-s + (0.990 + 0.140i)3-s + (−0.628 + 0.777i)4-s + (−0.0234 + 0.999i)5-s + (−0.300 − 0.953i)6-s + (0.819 − 0.572i)7-s + (0.972 + 0.232i)8-s + (0.960 + 0.277i)9-s + (0.912 − 0.409i)10-s + (0.344 + 0.938i)11-s + (−0.731 + 0.681i)12-s + (−0.912 + 0.409i)13-s + (−0.869 − 0.493i)14-s + (−0.163 + 0.986i)15-s + (−0.209 − 0.977i)16-s + (−0.344 + 0.938i)17-s + ⋯ |
L(s) = 1 | + (−0.430 − 0.902i)2-s + (0.990 + 0.140i)3-s + (−0.628 + 0.777i)4-s + (−0.0234 + 0.999i)5-s + (−0.300 − 0.953i)6-s + (0.819 − 0.572i)7-s + (0.972 + 0.232i)8-s + (0.960 + 0.277i)9-s + (0.912 − 0.409i)10-s + (0.344 + 0.938i)11-s + (−0.731 + 0.681i)12-s + (−0.912 + 0.409i)13-s + (−0.869 − 0.493i)14-s + (−0.163 + 0.986i)15-s + (−0.209 − 0.977i)16-s + (−0.344 + 0.938i)17-s + ⋯ |
Λ(s)=(=(269s/2ΓR(s)L(s)(0.982+0.185i)Λ(1−s)
Λ(s)=(=(269s/2ΓR(s)L(s)(0.982+0.185i)Λ(1−s)
Degree: |
1 |
Conductor: |
269
|
Sign: |
0.982+0.185i
|
Analytic conductor: |
1.24923 |
Root analytic conductor: |
1.24923 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ269(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 269, (0: ), 0.982+0.185i)
|
Particular Values
L(21) |
≈ |
1.352102338+0.1264228988i |
L(21) |
≈ |
1.352102338+0.1264228988i |
L(1) |
≈ |
1.168419917−0.08184706791i |
L(1) |
≈ |
1.168419917−0.08184706791i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 269 | 1 |
good | 2 | 1+(−0.430−0.902i)T |
| 3 | 1+(0.990+0.140i)T |
| 5 | 1+(−0.0234+0.999i)T |
| 7 | 1+(0.819−0.572i)T |
| 11 | 1+(0.344+0.938i)T |
| 13 | 1+(−0.912+0.409i)T |
| 17 | 1+(−0.344+0.938i)T |
| 19 | 1+(−0.930+0.366i)T |
| 23 | 1+(−0.990−0.140i)T |
| 29 | 1+(0.998−0.0468i)T |
| 31 | 1+(0.762−0.646i)T |
| 37 | 1+(0.982+0.186i)T |
| 41 | 1+(0.430−0.902i)T |
| 43 | 1+(−0.998+0.0468i)T |
| 47 | 1+(−0.116−0.993i)T |
| 53 | 1+(0.792+0.610i)T |
| 59 | 1+(0.628−0.777i)T |
| 61 | 1+(0.591+0.806i)T |
| 67 | 1+(−0.628−0.777i)T |
| 71 | 1+(0.869−0.493i)T |
| 73 | 1+(0.513+0.858i)T |
| 79 | 1+(−0.698+0.715i)T |
| 83 | 1+(−0.845−0.533i)T |
| 89 | 1+(−0.553−0.833i)T |
| 97 | 1+(0.591−0.806i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.40703775321823852456906411528, −24.83151547096297486597639702052, −24.330942429474181891818367617453, −23.56883485638160223837875382940, −21.95308249472855942864232914682, −21.166136652013872168989593311386, −19.90940883215151655413185933122, −19.43968802637074232886117700324, −18.234417529464982844283656741095, −17.49254602048440609886872783054, −16.33060557660384910913921901195, −15.56645880244507327249531393327, −14.60654685480896162015029024899, −13.86527738144083962115680104877, −12.89066495934289764571635031931, −11.665981839489453992001489638210, −10.04736278368044456185789664368, −9.07442723715851763364884247051, −8.40544327668001995115838463938, −7.794193088536400574818187301921, −6.42042553843865283587398961303, −5.110265123455187807377347002647, −4.31653033878708701276177145123, −2.437959937311198288259938540395, −1.05114632685767641725269596338,
1.83682383745513192702038419884, 2.4287891129726853891212459122, 3.93912716315312791126276645135, 4.44089935890591005862591118060, 6.81724953919887994658492643061, 7.741959718252249879276852184766, 8.5348966756488759661284368730, 9.99580697913302626269125066457, 10.24181279284666719656467390738, 11.499708557884096707014398302233, 12.53798006042568644378909165363, 13.75157307466666331022499274030, 14.490122704801161291440252919210, 15.20174548950051563755472348842, 16.90927649468822723223204939895, 17.7294073941317847233911825220, 18.63893701163527202416162404792, 19.62007689658967032725001447226, 20.04331730932089864382670897328, 21.23600887558001147416404405503, 21.74900766212094363891925641194, 22.828629588926231654934185238010, 23.9631338018669100569782934920, 25.27742309688900504850486062107, 26.074481942248766740459078081953