Properties

Label 1-269-269.127-r0-0-0
Degree 11
Conductor 269269
Sign 0.982+0.185i0.982 + 0.185i
Analytic cond. 1.249231.24923
Root an. cond. 1.249231.24923
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.430 − 0.902i)2-s + (0.990 + 0.140i)3-s + (−0.628 + 0.777i)4-s + (−0.0234 + 0.999i)5-s + (−0.300 − 0.953i)6-s + (0.819 − 0.572i)7-s + (0.972 + 0.232i)8-s + (0.960 + 0.277i)9-s + (0.912 − 0.409i)10-s + (0.344 + 0.938i)11-s + (−0.731 + 0.681i)12-s + (−0.912 + 0.409i)13-s + (−0.869 − 0.493i)14-s + (−0.163 + 0.986i)15-s + (−0.209 − 0.977i)16-s + (−0.344 + 0.938i)17-s + ⋯
L(s)  = 1  + (−0.430 − 0.902i)2-s + (0.990 + 0.140i)3-s + (−0.628 + 0.777i)4-s + (−0.0234 + 0.999i)5-s + (−0.300 − 0.953i)6-s + (0.819 − 0.572i)7-s + (0.972 + 0.232i)8-s + (0.960 + 0.277i)9-s + (0.912 − 0.409i)10-s + (0.344 + 0.938i)11-s + (−0.731 + 0.681i)12-s + (−0.912 + 0.409i)13-s + (−0.869 − 0.493i)14-s + (−0.163 + 0.986i)15-s + (−0.209 − 0.977i)16-s + (−0.344 + 0.938i)17-s + ⋯

Functional equation

Λ(s)=(269s/2ΓR(s)L(s)=((0.982+0.185i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 269 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.982 + 0.185i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(269s/2ΓR(s)L(s)=((0.982+0.185i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 269 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.982 + 0.185i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 269269
Sign: 0.982+0.185i0.982 + 0.185i
Analytic conductor: 1.249231.24923
Root analytic conductor: 1.249231.24923
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ269(127,)\chi_{269} (127, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 269, (0: ), 0.982+0.185i)(1,\ 269,\ (0:\ ),\ 0.982 + 0.185i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.352102338+0.1264228988i1.352102338 + 0.1264228988i
L(12)L(\frac12) \approx 1.352102338+0.1264228988i1.352102338 + 0.1264228988i
L(1)L(1) \approx 1.1684199170.08184706791i1.168419917 - 0.08184706791i
L(1)L(1) \approx 1.1684199170.08184706791i1.168419917 - 0.08184706791i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad269 1 1
good2 1+(0.4300.902i)T 1 + (-0.430 - 0.902i)T
3 1+(0.990+0.140i)T 1 + (0.990 + 0.140i)T
5 1+(0.0234+0.999i)T 1 + (-0.0234 + 0.999i)T
7 1+(0.8190.572i)T 1 + (0.819 - 0.572i)T
11 1+(0.344+0.938i)T 1 + (0.344 + 0.938i)T
13 1+(0.912+0.409i)T 1 + (-0.912 + 0.409i)T
17 1+(0.344+0.938i)T 1 + (-0.344 + 0.938i)T
19 1+(0.930+0.366i)T 1 + (-0.930 + 0.366i)T
23 1+(0.9900.140i)T 1 + (-0.990 - 0.140i)T
29 1+(0.9980.0468i)T 1 + (0.998 - 0.0468i)T
31 1+(0.7620.646i)T 1 + (0.762 - 0.646i)T
37 1+(0.982+0.186i)T 1 + (0.982 + 0.186i)T
41 1+(0.4300.902i)T 1 + (0.430 - 0.902i)T
43 1+(0.998+0.0468i)T 1 + (-0.998 + 0.0468i)T
47 1+(0.1160.993i)T 1 + (-0.116 - 0.993i)T
53 1+(0.792+0.610i)T 1 + (0.792 + 0.610i)T
59 1+(0.6280.777i)T 1 + (0.628 - 0.777i)T
61 1+(0.591+0.806i)T 1 + (0.591 + 0.806i)T
67 1+(0.6280.777i)T 1 + (-0.628 - 0.777i)T
71 1+(0.8690.493i)T 1 + (0.869 - 0.493i)T
73 1+(0.513+0.858i)T 1 + (0.513 + 0.858i)T
79 1+(0.698+0.715i)T 1 + (-0.698 + 0.715i)T
83 1+(0.8450.533i)T 1 + (-0.845 - 0.533i)T
89 1+(0.5530.833i)T 1 + (-0.553 - 0.833i)T
97 1+(0.5910.806i)T 1 + (0.591 - 0.806i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−25.40703775321823852456906411528, −24.83151547096297486597639702052, −24.330942429474181891818367617453, −23.56883485638160223837875382940, −21.95308249472855942864232914682, −21.166136652013872168989593311386, −19.90940883215151655413185933122, −19.43968802637074232886117700324, −18.234417529464982844283656741095, −17.49254602048440609886872783054, −16.33060557660384910913921901195, −15.56645880244507327249531393327, −14.60654685480896162015029024899, −13.86527738144083962115680104877, −12.89066495934289764571635031931, −11.665981839489453992001489638210, −10.04736278368044456185789664368, −9.07442723715851763364884247051, −8.40544327668001995115838463938, −7.794193088536400574818187301921, −6.42042553843865283587398961303, −5.110265123455187807377347002647, −4.31653033878708701276177145123, −2.437959937311198288259938540395, −1.05114632685767641725269596338, 1.83682383745513192702038419884, 2.4287891129726853891212459122, 3.93912716315312791126276645135, 4.44089935890591005862591118060, 6.81724953919887994658492643061, 7.741959718252249879276852184766, 8.5348966756488759661284368730, 9.99580697913302626269125066457, 10.24181279284666719656467390738, 11.499708557884096707014398302233, 12.53798006042568644378909165363, 13.75157307466666331022499274030, 14.490122704801161291440252919210, 15.20174548950051563755472348842, 16.90927649468822723223204939895, 17.7294073941317847233911825220, 18.63893701163527202416162404792, 19.62007689658967032725001447226, 20.04331730932089864382670897328, 21.23600887558001147416404405503, 21.74900766212094363891925641194, 22.828629588926231654934185238010, 23.9631338018669100569782934920, 25.27742309688900504850486062107, 26.074481942248766740459078081953

Graph of the ZZ-function along the critical line