Properties

Label 1-273-273.20-r1-0-0
Degree 11
Conductor 273273
Sign 0.852+0.522i0.852 + 0.522i
Analytic cond. 29.337929.3379
Root an. cond. 29.337929.3379
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)2-s + (0.5 − 0.866i)4-s + i·5-s + i·8-s + (−0.5 − 0.866i)10-s + (0.866 − 0.5i)11-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (0.866 + 0.5i)19-s + (0.866 + 0.5i)20-s + (−0.5 + 0.866i)22-s + (−0.5 − 0.866i)23-s − 25-s + (0.5 + 0.866i)29-s i·31-s + (0.866 + 0.5i)32-s + ⋯
L(s)  = 1  + (−0.866 + 0.5i)2-s + (0.5 − 0.866i)4-s + i·5-s + i·8-s + (−0.5 − 0.866i)10-s + (0.866 − 0.5i)11-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (0.866 + 0.5i)19-s + (0.866 + 0.5i)20-s + (−0.5 + 0.866i)22-s + (−0.5 − 0.866i)23-s − 25-s + (0.5 + 0.866i)29-s i·31-s + (0.866 + 0.5i)32-s + ⋯

Functional equation

Λ(s)=(273s/2ΓR(s+1)L(s)=((0.852+0.522i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.852 + 0.522i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(273s/2ΓR(s+1)L(s)=((0.852+0.522i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.852 + 0.522i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 273273    =    37133 \cdot 7 \cdot 13
Sign: 0.852+0.522i0.852 + 0.522i
Analytic conductor: 29.337929.3379
Root analytic conductor: 29.337929.3379
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ273(20,)\chi_{273} (20, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 273, (1: ), 0.852+0.522i)(1,\ 273,\ (1:\ ),\ 0.852 + 0.522i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.282477415+0.3614261739i1.282477415 + 0.3614261739i
L(12)L(\frac12) \approx 1.282477415+0.3614261739i1.282477415 + 0.3614261739i
L(1)L(1) \approx 0.8063256420+0.2110008989i0.8063256420 + 0.2110008989i
L(1)L(1) \approx 0.8063256420+0.2110008989i0.8063256420 + 0.2110008989i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1 1
13 1 1
good2 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
5 1+iT 1 + iT
11 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
17 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
19 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
23 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
29 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
31 1iT 1 - iT
37 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
41 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
43 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
47 1iT 1 - iT
53 1T 1 - T
59 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
61 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
67 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
71 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
73 1+iT 1 + iT
79 1+T 1 + T
83 1+iT 1 + iT
89 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
97 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−25.41803444811034925477286559377, −24.75983348201019502266366187587, −23.792788969117158197332147249122, −22.487590898406096652223330674, −21.44897131170896309483586040833, −20.74767001911591486388480358220, −19.682473829429285852466240898942, −19.38122411721874237328290090466, −17.76383838134717468929030966432, −17.40091358136894862809193525766, −16.32139385228150077756357440737, −15.59315619925057909465707888163, −14.10562163935242409421186383679, −12.85282393088727691653259175220, −12.14734991437298243901703969433, −11.29577469593156094030429494644, −9.929728201544637887423529519314, −9.29305419156054460481871067801, −8.30374270161896367396630965668, −7.3729266446944454065249759380, −6.03526133764313619827392525321, −4.53906975251464164187780029132, −3.44075990981077973770726093426, −1.827543024427916655243258651028, −0.90502645176782729644276870263, 0.77424037566086484264407401365, 2.28925049257603702923624357356, 3.58545886978054068359630709594, 5.36580425176134717454739025034, 6.419394053535866640866672670, 7.198027690093791811022028858324, 8.2288749239726912319432774874, 9.39286967242287362562629378780, 10.226199506116894351587094173720, 11.21270939051572538178767066871, 12.046481005810714868583914420507, 14.05464164060995936581741980357, 14.30461642801769108008188894526, 15.532187818459373535099388305011, 16.37052381121447978504622362185, 17.320527865267943100426604244354, 18.36968362984864950080406815246, 18.829569484081481090089768965270, 19.85183691657615182510881413302, 20.79288784759348183493613797329, 22.19638258938501537714058099450, 22.817905279271053756259842715695, 23.9898058706500565281226121952, 24.84049240192059502839831334744, 25.64965942071834720031067766925

Graph of the ZZ-function along the critical line