L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.5 − 0.866i)4-s + i·5-s + i·8-s + (−0.5 − 0.866i)10-s + (0.866 − 0.5i)11-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (0.866 + 0.5i)19-s + (0.866 + 0.5i)20-s + (−0.5 + 0.866i)22-s + (−0.5 − 0.866i)23-s − 25-s + (0.5 + 0.866i)29-s − i·31-s + (0.866 + 0.5i)32-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.5 − 0.866i)4-s + i·5-s + i·8-s + (−0.5 − 0.866i)10-s + (0.866 − 0.5i)11-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (0.866 + 0.5i)19-s + (0.866 + 0.5i)20-s + (−0.5 + 0.866i)22-s + (−0.5 − 0.866i)23-s − 25-s + (0.5 + 0.866i)29-s − i·31-s + (0.866 + 0.5i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.852 + 0.522i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.852 + 0.522i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.282477415 + 0.3614261739i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.282477415 + 0.3614261739i\) |
\(L(1)\) |
\(\approx\) |
\(0.8063256420 + 0.2110008989i\) |
\(L(1)\) |
\(\approx\) |
\(0.8063256420 + 0.2110008989i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 + iT \) |
| 11 | \( 1 + (0.866 - 0.5i)T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.866 + 0.5i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 - iT \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + (0.866 - 0.5i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (0.866 + 0.5i)T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.866 - 0.5i)T \) |
| 71 | \( 1 + (0.866 + 0.5i)T \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 + (-0.866 + 0.5i)T \) |
| 97 | \( 1 + (0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.41803444811034925477286559377, −24.75983348201019502266366187587, −23.792788969117158197332147249122, −22.487590898406096652223330674, −21.44897131170896309483586040833, −20.74767001911591486388480358220, −19.682473829429285852466240898942, −19.38122411721874237328290090466, −17.76383838134717468929030966432, −17.40091358136894862809193525766, −16.32139385228150077756357440737, −15.59315619925057909465707888163, −14.10562163935242409421186383679, −12.85282393088727691653259175220, −12.14734991437298243901703969433, −11.29577469593156094030429494644, −9.929728201544637887423529519314, −9.29305419156054460481871067801, −8.30374270161896367396630965668, −7.3729266446944454065249759380, −6.03526133764313619827392525321, −4.53906975251464164187780029132, −3.44075990981077973770726093426, −1.827543024427916655243258651028, −0.90502645176782729644276870263,
0.77424037566086484264407401365, 2.28925049257603702923624357356, 3.58545886978054068359630709594, 5.36580425176134717454739025034, 6.419394053535866640866672670, 7.198027690093791811022028858324, 8.2288749239726912319432774874, 9.39286967242287362562629378780, 10.226199506116894351587094173720, 11.21270939051572538178767066871, 12.046481005810714868583914420507, 14.05464164060995936581741980357, 14.30461642801769108008188894526, 15.532187818459373535099388305011, 16.37052381121447978504622362185, 17.320527865267943100426604244354, 18.36968362984864950080406815246, 18.829569484081481090089768965270, 19.85183691657615182510881413302, 20.79288784759348183493613797329, 22.19638258938501537714058099450, 22.817905279271053756259842715695, 23.9898058706500565281226121952, 24.84049240192059502839831334744, 25.64965942071834720031067766925