Properties

Label 1-273-273.44-r0-0-0
Degree 11
Conductor 273273
Sign 0.3490.936i0.349 - 0.936i
Analytic cond. 1.267801.26780
Root an. cond. 1.267801.26780
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 − 0.5i)2-s + (0.5 − 0.866i)4-s + (0.866 − 0.5i)5-s i·8-s + (0.5 − 0.866i)10-s + (0.866 + 0.5i)11-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s + (−0.866 + 0.5i)19-s i·20-s + 22-s + (−0.5 − 0.866i)23-s + (0.5 − 0.866i)25-s − 29-s + (0.866 + 0.5i)31-s + (−0.866 − 0.5i)32-s + ⋯
L(s)  = 1  + (0.866 − 0.5i)2-s + (0.5 − 0.866i)4-s + (0.866 − 0.5i)5-s i·8-s + (0.5 − 0.866i)10-s + (0.866 + 0.5i)11-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s + (−0.866 + 0.5i)19-s i·20-s + 22-s + (−0.5 − 0.866i)23-s + (0.5 − 0.866i)25-s − 29-s + (0.866 + 0.5i)31-s + (−0.866 − 0.5i)32-s + ⋯

Functional equation

Λ(s)=(273s/2ΓR(s)L(s)=((0.3490.936i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.349 - 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(273s/2ΓR(s)L(s)=((0.3490.936i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.349 - 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 273273    =    37133 \cdot 7 \cdot 13
Sign: 0.3490.936i0.349 - 0.936i
Analytic conductor: 1.267801.26780
Root analytic conductor: 1.267801.26780
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ273(44,)\chi_{273} (44, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 273, (0: ), 0.3490.936i)(1,\ 273,\ (0:\ ),\ 0.349 - 0.936i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.8980301951.317295258i1.898030195 - 1.317295258i
L(12)L(\frac12) \approx 1.8980301951.317295258i1.898030195 - 1.317295258i
L(1)L(1) \approx 1.7189219420.7569514352i1.718921942 - 0.7569514352i
L(1)L(1) \approx 1.7189219420.7569514352i1.718921942 - 0.7569514352i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1 1
13 1 1
good2 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
5 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
11 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
17 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
19 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
23 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
29 1T 1 - T
31 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
37 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
41 1+iT 1 + iT
43 1T 1 - T
47 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
53 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
59 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
61 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
67 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
71 1+iT 1 + iT
73 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
79 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
83 1+iT 1 + iT
89 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
97 1iT 1 - iT
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−25.7094905529654810775386008991, −24.89507906088240984610549672591, −24.18997364710749574652796349579, −23.062101943205842737729939233908, −22.18296565159319623604921052358, −21.67893603859083278274066073828, −20.717874666194723125453596802916, −19.64341744088417422567679471163, −18.36422673125357417717716596564, −17.34790615088346621855655675605, −16.702714564985387829120435804089, −15.47800651309281819808603188359, −14.65471046304922140208226252619, −13.72079018379754602788880681554, −13.199401829271052854336583554261, −11.79073126046544048830562922507, −11.06117382358985424906276855102, −9.65858729171633752112231778210, −8.58494244674683300563381480293, −7.19666914184150368575570591791, −6.39415248053309884703327714406, −5.53707206997284632578239447032, −4.28489618161643468522049171341, −3.088409274252249262447154656200, −1.96223697104925034890612309862, 1.44815680842568669196518181619, 2.32555232006560521208377276346, 3.91581484910928015210052074736, 4.761715378040968313197858678066, 6.023433925372479159635151544283, 6.64651441161728679079050484816, 8.4415575152061840633210008116, 9.61969747522446328116479722078, 10.38409416953632651163662814742, 11.55800998283664896910639922310, 12.632321456603661489722909384993, 13.15949590118382373158030216137, 14.36596392464286858292501617751, 14.90807209651236337507769459089, 16.28868046864084652870402278093, 17.165655276987720880873107489547, 18.26512336659239815369669729514, 19.47322247435149370802082633636, 20.21445271835393410526363949035, 21.11436864056333468604979821610, 21.84512256893405610963135685573, 22.64914351897255866638569922265, 23.66384238374497181642996398101, 24.63945901852297801364352180874, 25.15929577659941670158077186026

Graph of the ZZ-function along the critical line