L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)4-s + (0.866 − 0.5i)5-s − i·8-s + (0.5 − 0.866i)10-s + (0.866 + 0.5i)11-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s + (−0.866 + 0.5i)19-s − i·20-s + 22-s + (−0.5 − 0.866i)23-s + (0.5 − 0.866i)25-s − 29-s + (0.866 + 0.5i)31-s + (−0.866 − 0.5i)32-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)4-s + (0.866 − 0.5i)5-s − i·8-s + (0.5 − 0.866i)10-s + (0.866 + 0.5i)11-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s + (−0.866 + 0.5i)19-s − i·20-s + 22-s + (−0.5 − 0.866i)23-s + (0.5 − 0.866i)25-s − 29-s + (0.866 + 0.5i)31-s + (−0.866 − 0.5i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.349 - 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.349 - 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.898030195 - 1.317295258i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.898030195 - 1.317295258i\) |
\(L(1)\) |
\(\approx\) |
\(1.718921942 - 0.7569514352i\) |
\(L(1)\) |
\(\approx\) |
\(1.718921942 - 0.7569514352i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (0.866 + 0.5i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + (0.866 + 0.5i)T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + iT \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.866 + 0.5i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (0.866 + 0.5i)T \) |
| 61 | \( 1 + (-0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.866 + 0.5i)T \) |
| 71 | \( 1 + iT \) |
| 73 | \( 1 + (-0.866 - 0.5i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 + (-0.866 + 0.5i)T \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.7094905529654810775386008991, −24.89507906088240984610549672591, −24.18997364710749574652796349579, −23.062101943205842737729939233908, −22.18296565159319623604921052358, −21.67893603859083278274066073828, −20.717874666194723125453596802916, −19.64341744088417422567679471163, −18.36422673125357417717716596564, −17.34790615088346621855655675605, −16.702714564985387829120435804089, −15.47800651309281819808603188359, −14.65471046304922140208226252619, −13.72079018379754602788880681554, −13.199401829271052854336583554261, −11.79073126046544048830562922507, −11.06117382358985424906276855102, −9.65858729171633752112231778210, −8.58494244674683300563381480293, −7.19666914184150368575570591791, −6.39415248053309884703327714406, −5.53707206997284632578239447032, −4.28489618161643468522049171341, −3.088409274252249262447154656200, −1.96223697104925034890612309862,
1.44815680842568669196518181619, 2.32555232006560521208377276346, 3.91581484910928015210052074736, 4.761715378040968313197858678066, 6.023433925372479159635151544283, 6.64651441161728679079050484816, 8.4415575152061840633210008116, 9.61969747522446328116479722078, 10.38409416953632651163662814742, 11.55800998283664896910639922310, 12.632321456603661489722909384993, 13.15949590118382373158030216137, 14.36596392464286858292501617751, 14.90807209651236337507769459089, 16.28868046864084652870402278093, 17.165655276987720880873107489547, 18.26512336659239815369669729514, 19.47322247435149370802082633636, 20.21445271835393410526363949035, 21.11436864056333468604979821610, 21.84512256893405610963135685573, 22.64914351897255866638569922265, 23.66384238374497181642996398101, 24.63945901852297801364352180874, 25.15929577659941670158077186026