L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)4-s + (0.866 − 0.5i)5-s − i·8-s + (0.5 − 0.866i)10-s + (0.866 + 0.5i)11-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s + (−0.866 + 0.5i)19-s − i·20-s + 22-s + (−0.5 − 0.866i)23-s + (0.5 − 0.866i)25-s − 29-s + (0.866 + 0.5i)31-s + (−0.866 − 0.5i)32-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)4-s + (0.866 − 0.5i)5-s − i·8-s + (0.5 − 0.866i)10-s + (0.866 + 0.5i)11-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s + (−0.866 + 0.5i)19-s − i·20-s + 22-s + (−0.5 − 0.866i)23-s + (0.5 − 0.866i)25-s − 29-s + (0.866 + 0.5i)31-s + (−0.866 − 0.5i)32-s + ⋯ |
Λ(s)=(=(273s/2ΓR(s)L(s)(0.349−0.936i)Λ(1−s)
Λ(s)=(=(273s/2ΓR(s)L(s)(0.349−0.936i)Λ(1−s)
Degree: |
1 |
Conductor: |
273
= 3⋅7⋅13
|
Sign: |
0.349−0.936i
|
Analytic conductor: |
1.26780 |
Root analytic conductor: |
1.26780 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ273(44,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 273, (0: ), 0.349−0.936i)
|
Particular Values
L(21) |
≈ |
1.898030195−1.317295258i |
L(21) |
≈ |
1.898030195−1.317295258i |
L(1) |
≈ |
1.718921942−0.7569514352i |
L(1) |
≈ |
1.718921942−0.7569514352i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 13 | 1 |
good | 2 | 1+(0.866−0.5i)T |
| 5 | 1+(0.866−0.5i)T |
| 11 | 1+(0.866+0.5i)T |
| 17 | 1+(−0.5+0.866i)T |
| 19 | 1+(−0.866+0.5i)T |
| 23 | 1+(−0.5−0.866i)T |
| 29 | 1−T |
| 31 | 1+(0.866+0.5i)T |
| 37 | 1+(0.866−0.5i)T |
| 41 | 1+iT |
| 43 | 1−T |
| 47 | 1+(−0.866+0.5i)T |
| 53 | 1+(0.5−0.866i)T |
| 59 | 1+(0.866+0.5i)T |
| 61 | 1+(−0.5−0.866i)T |
| 67 | 1+(0.866+0.5i)T |
| 71 | 1+iT |
| 73 | 1+(−0.866−0.5i)T |
| 79 | 1+(−0.5−0.866i)T |
| 83 | 1+iT |
| 89 | 1+(−0.866+0.5i)T |
| 97 | 1−iT |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.7094905529654810775386008991, −24.89507906088240984610549672591, −24.18997364710749574652796349579, −23.062101943205842737729939233908, −22.18296565159319623604921052358, −21.67893603859083278274066073828, −20.717874666194723125453596802916, −19.64341744088417422567679471163, −18.36422673125357417717716596564, −17.34790615088346621855655675605, −16.702714564985387829120435804089, −15.47800651309281819808603188359, −14.65471046304922140208226252619, −13.72079018379754602788880681554, −13.199401829271052854336583554261, −11.79073126046544048830562922507, −11.06117382358985424906276855102, −9.65858729171633752112231778210, −8.58494244674683300563381480293, −7.19666914184150368575570591791, −6.39415248053309884703327714406, −5.53707206997284632578239447032, −4.28489618161643468522049171341, −3.088409274252249262447154656200, −1.96223697104925034890612309862,
1.44815680842568669196518181619, 2.32555232006560521208377276346, 3.91581484910928015210052074736, 4.761715378040968313197858678066, 6.023433925372479159635151544283, 6.64651441161728679079050484816, 8.4415575152061840633210008116, 9.61969747522446328116479722078, 10.38409416953632651163662814742, 11.55800998283664896910639922310, 12.632321456603661489722909384993, 13.15949590118382373158030216137, 14.36596392464286858292501617751, 14.90807209651236337507769459089, 16.28868046864084652870402278093, 17.165655276987720880873107489547, 18.26512336659239815369669729514, 19.47322247435149370802082633636, 20.21445271835393410526363949035, 21.11436864056333468604979821610, 21.84512256893405610963135685573, 22.64914351897255866638569922265, 23.66384238374497181642996398101, 24.63945901852297801364352180874, 25.15929577659941670158077186026