L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.5 − 0.866i)4-s + (0.866 − 0.5i)5-s + i·8-s + (−0.5 + 0.866i)10-s + (−0.866 − 0.5i)11-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.866 + 0.5i)19-s − i·20-s + 22-s + (−0.5 − 0.866i)23-s + (0.5 − 0.866i)25-s − 29-s + (0.866 + 0.5i)31-s + (0.866 + 0.5i)32-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.5 − 0.866i)4-s + (0.866 − 0.5i)5-s + i·8-s + (−0.5 + 0.866i)10-s + (−0.866 − 0.5i)11-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.866 + 0.5i)19-s − i·20-s + 22-s + (−0.5 − 0.866i)23-s + (0.5 − 0.866i)25-s − 29-s + (0.866 + 0.5i)31-s + (0.866 + 0.5i)32-s + ⋯ |
Λ(s)=(=(273s/2ΓR(s+1)L(s)(−0.810−0.586i)Λ(1−s)
Λ(s)=(=(273s/2ΓR(s+1)L(s)(−0.810−0.586i)Λ(1−s)
Degree: |
1 |
Conductor: |
273
= 3⋅7⋅13
|
Sign: |
−0.810−0.586i
|
Analytic conductor: |
29.3379 |
Root analytic conductor: |
29.3379 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ273(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 273, (1: ), −0.810−0.586i)
|
Particular Values
L(21) |
≈ |
0.1340485799−0.4138773199i |
L(21) |
≈ |
0.1340485799−0.4138773199i |
L(1) |
≈ |
0.6656374723−0.03373457555i |
L(1) |
≈ |
0.6656374723−0.03373457555i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 13 | 1 |
good | 2 | 1+(−0.866+0.5i)T |
| 5 | 1+(0.866−0.5i)T |
| 11 | 1+(−0.866−0.5i)T |
| 17 | 1+(0.5−0.866i)T |
| 19 | 1+(−0.866+0.5i)T |
| 23 | 1+(−0.5−0.866i)T |
| 29 | 1−T |
| 31 | 1+(0.866+0.5i)T |
| 37 | 1+(−0.866+0.5i)T |
| 41 | 1+iT |
| 43 | 1−T |
| 47 | 1+(−0.866+0.5i)T |
| 53 | 1+(0.5−0.866i)T |
| 59 | 1+(0.866+0.5i)T |
| 61 | 1+(0.5+0.866i)T |
| 67 | 1+(−0.866−0.5i)T |
| 71 | 1−iT |
| 73 | 1+(−0.866−0.5i)T |
| 79 | 1+(−0.5−0.866i)T |
| 83 | 1+iT |
| 89 | 1+(−0.866+0.5i)T |
| 97 | 1−iT |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.989062120156396346238755753426, −25.37667958493939356769149896304, −24.216299984973977862366948515732, −23.00322730272905515129797994911, −21.83834528865094084354309944226, −21.2577481487249143223864897149, −20.41203901691424820609164108172, −19.24535741738779529658317158439, −18.55185597148864993104825801129, −17.56046503950878104566510764514, −17.09505429336104175100053780222, −15.7615613510529650254306811882, −14.83919983185452786600752117775, −13.430093891421890168666432280105, −12.72296084277740598729823716216, −11.47470253082485221992805164676, −10.42046444668915626242068125584, −9.9336290984125364451032992457, −8.7790208969938251873585655724, −7.68668085093262011624174907121, −6.68680620499783787896755251278, −5.490025849834652281878122445848, −3.79445106265535082726694413252, −2.51420121158221436728448396461, −1.66489947305575929006787953420,
0.16759993089686253962632650947, 1.549517037467580335716915398017, 2.748406822492671452935365553317, 4.84031567208757686782801284392, 5.73546058981700761667451648619, 6.676808116758288472811656938804, 8.01913027565739456557384551415, 8.731745952138809322089914200350, 9.887833978264046917564187793961, 10.472922373824191010681754313737, 11.77656209275399880022625584613, 13.08376393690033077689348336619, 14.03404914592097471181497895743, 15.0092048640902064204355423760, 16.28929276169516796503207601448, 16.65500708384865639237454845491, 17.841374424453177293392647417515, 18.45364824396628650337947295659, 19.42973606759423678235227207016, 20.70485776293821349239611127205, 21.061732997900560251894280959699, 22.52139656703184092477684499442, 23.63899481305059229358264483101, 24.43908271907825894099733949237, 25.20358814832729694427527405319