L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.5 − 0.866i)4-s + (0.866 − 0.5i)5-s + i·8-s + (−0.5 + 0.866i)10-s + (−0.866 − 0.5i)11-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.866 + 0.5i)19-s − i·20-s + 22-s + (−0.5 − 0.866i)23-s + (0.5 − 0.866i)25-s − 29-s + (0.866 + 0.5i)31-s + (0.866 + 0.5i)32-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.5 − 0.866i)4-s + (0.866 − 0.5i)5-s + i·8-s + (−0.5 + 0.866i)10-s + (−0.866 − 0.5i)11-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.866 + 0.5i)19-s − i·20-s + 22-s + (−0.5 − 0.866i)23-s + (0.5 − 0.866i)25-s − 29-s + (0.866 + 0.5i)31-s + (0.866 + 0.5i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.810 - 0.586i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.810 - 0.586i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1340485799 - 0.4138773199i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1340485799 - 0.4138773199i\) |
\(L(1)\) |
\(\approx\) |
\(0.6656374723 - 0.03373457555i\) |
\(L(1)\) |
\(\approx\) |
\(0.6656374723 - 0.03373457555i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.866 - 0.5i)T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + (0.866 + 0.5i)T \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + iT \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.866 + 0.5i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (0.866 + 0.5i)T \) |
| 61 | \( 1 + (0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.866 - 0.5i)T \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 + (-0.866 - 0.5i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 + (-0.866 + 0.5i)T \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.989062120156396346238755753426, −25.37667958493939356769149896304, −24.216299984973977862366948515732, −23.00322730272905515129797994911, −21.83834528865094084354309944226, −21.2577481487249143223864897149, −20.41203901691424820609164108172, −19.24535741738779529658317158439, −18.55185597148864993104825801129, −17.56046503950878104566510764514, −17.09505429336104175100053780222, −15.7615613510529650254306811882, −14.83919983185452786600752117775, −13.430093891421890168666432280105, −12.72296084277740598729823716216, −11.47470253082485221992805164676, −10.42046444668915626242068125584, −9.9336290984125364451032992457, −8.7790208969938251873585655724, −7.68668085093262011624174907121, −6.68680620499783787896755251278, −5.490025849834652281878122445848, −3.79445106265535082726694413252, −2.51420121158221436728448396461, −1.66489947305575929006787953420,
0.16759993089686253962632650947, 1.549517037467580335716915398017, 2.748406822492671452935365553317, 4.84031567208757686782801284392, 5.73546058981700761667451648619, 6.676808116758288472811656938804, 8.01913027565739456557384551415, 8.731745952138809322089914200350, 9.887833978264046917564187793961, 10.472922373824191010681754313737, 11.77656209275399880022625584613, 13.08376393690033077689348336619, 14.03404914592097471181497895743, 15.0092048640902064204355423760, 16.28929276169516796503207601448, 16.65500708384865639237454845491, 17.841374424453177293392647417515, 18.45364824396628650337947295659, 19.42973606759423678235227207016, 20.70485776293821349239611127205, 21.061732997900560251894280959699, 22.52139656703184092477684499442, 23.63899481305059229358264483101, 24.43908271907825894099733949237, 25.20358814832729694427527405319