Properties

Label 1-273-273.47-r1-0-0
Degree 11
Conductor 273273
Sign 0.8100.586i-0.810 - 0.586i
Analytic cond. 29.337929.3379
Root an. cond. 29.337929.3379
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)2-s + (0.5 − 0.866i)4-s + (0.866 − 0.5i)5-s + i·8-s + (−0.5 + 0.866i)10-s + (−0.866 − 0.5i)11-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.866 + 0.5i)19-s i·20-s + 22-s + (−0.5 − 0.866i)23-s + (0.5 − 0.866i)25-s − 29-s + (0.866 + 0.5i)31-s + (0.866 + 0.5i)32-s + ⋯
L(s)  = 1  + (−0.866 + 0.5i)2-s + (0.5 − 0.866i)4-s + (0.866 − 0.5i)5-s + i·8-s + (−0.5 + 0.866i)10-s + (−0.866 − 0.5i)11-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.866 + 0.5i)19-s i·20-s + 22-s + (−0.5 − 0.866i)23-s + (0.5 − 0.866i)25-s − 29-s + (0.866 + 0.5i)31-s + (0.866 + 0.5i)32-s + ⋯

Functional equation

Λ(s)=(273s/2ΓR(s+1)L(s)=((0.8100.586i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.810 - 0.586i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(273s/2ΓR(s+1)L(s)=((0.8100.586i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.810 - 0.586i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 273273    =    37133 \cdot 7 \cdot 13
Sign: 0.8100.586i-0.810 - 0.586i
Analytic conductor: 29.337929.3379
Root analytic conductor: 29.337929.3379
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ273(47,)\chi_{273} (47, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 273, (1: ), 0.8100.586i)(1,\ 273,\ (1:\ ),\ -0.810 - 0.586i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.13404857990.4138773199i0.1340485799 - 0.4138773199i
L(12)L(\frac12) \approx 0.13404857990.4138773199i0.1340485799 - 0.4138773199i
L(1)L(1) \approx 0.66563747230.03373457555i0.6656374723 - 0.03373457555i
L(1)L(1) \approx 0.66563747230.03373457555i0.6656374723 - 0.03373457555i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1 1
13 1 1
good2 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
5 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
11 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
17 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
19 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
23 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
29 1T 1 - T
31 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
37 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
41 1+iT 1 + iT
43 1T 1 - T
47 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
53 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
59 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
61 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
67 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
71 1iT 1 - iT
73 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
79 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
83 1+iT 1 + iT
89 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
97 1iT 1 - iT
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−25.989062120156396346238755753426, −25.37667958493939356769149896304, −24.216299984973977862366948515732, −23.00322730272905515129797994911, −21.83834528865094084354309944226, −21.2577481487249143223864897149, −20.41203901691424820609164108172, −19.24535741738779529658317158439, −18.55185597148864993104825801129, −17.56046503950878104566510764514, −17.09505429336104175100053780222, −15.7615613510529650254306811882, −14.83919983185452786600752117775, −13.430093891421890168666432280105, −12.72296084277740598729823716216, −11.47470253082485221992805164676, −10.42046444668915626242068125584, −9.9336290984125364451032992457, −8.7790208969938251873585655724, −7.68668085093262011624174907121, −6.68680620499783787896755251278, −5.490025849834652281878122445848, −3.79445106265535082726694413252, −2.51420121158221436728448396461, −1.66489947305575929006787953420, 0.16759993089686253962632650947, 1.549517037467580335716915398017, 2.748406822492671452935365553317, 4.84031567208757686782801284392, 5.73546058981700761667451648619, 6.676808116758288472811656938804, 8.01913027565739456557384551415, 8.731745952138809322089914200350, 9.887833978264046917564187793961, 10.472922373824191010681754313737, 11.77656209275399880022625584613, 13.08376393690033077689348336619, 14.03404914592097471181497895743, 15.0092048640902064204355423760, 16.28929276169516796503207601448, 16.65500708384865639237454845491, 17.841374424453177293392647417515, 18.45364824396628650337947295659, 19.42973606759423678235227207016, 20.70485776293821349239611127205, 21.061732997900560251894280959699, 22.52139656703184092477684499442, 23.63899481305059229358264483101, 24.43908271907825894099733949237, 25.20358814832729694427527405319

Graph of the ZZ-function along the critical line