Properties

Label 1-2793-2793.1058-r0-0-0
Degree 11
Conductor 27932793
Sign 0.5940.803i0.594 - 0.803i
Analytic cond. 12.970612.9706
Root an. cond. 12.970612.9706
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.878 − 0.478i)2-s + (0.542 − 0.840i)4-s + (−0.698 + 0.715i)5-s + (0.0747 − 0.997i)8-s + (−0.270 + 0.962i)10-s + (0.988 − 0.149i)11-s + (−0.980 − 0.198i)13-s + (−0.411 − 0.911i)16-s + (0.998 − 0.0498i)17-s + (0.222 + 0.974i)20-s + (0.797 − 0.603i)22-s + (−0.542 + 0.840i)23-s + (−0.0249 − 0.999i)25-s + (−0.955 + 0.294i)26-s + (0.921 − 0.388i)29-s + ⋯
L(s)  = 1  + (0.878 − 0.478i)2-s + (0.542 − 0.840i)4-s + (−0.698 + 0.715i)5-s + (0.0747 − 0.997i)8-s + (−0.270 + 0.962i)10-s + (0.988 − 0.149i)11-s + (−0.980 − 0.198i)13-s + (−0.411 − 0.911i)16-s + (0.998 − 0.0498i)17-s + (0.222 + 0.974i)20-s + (0.797 − 0.603i)22-s + (−0.542 + 0.840i)23-s + (−0.0249 − 0.999i)25-s + (−0.955 + 0.294i)26-s + (0.921 − 0.388i)29-s + ⋯

Functional equation

Λ(s)=(2793s/2ΓR(s)L(s)=((0.5940.803i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.594 - 0.803i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(2793s/2ΓR(s)L(s)=((0.5940.803i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.594 - 0.803i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 27932793    =    372193 \cdot 7^{2} \cdot 19
Sign: 0.5940.803i0.594 - 0.803i
Analytic conductor: 12.970612.9706
Root analytic conductor: 12.970612.9706
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ2793(1058,)\chi_{2793} (1058, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 2793, (0: ), 0.5940.803i)(1,\ 2793,\ (0:\ ),\ 0.594 - 0.803i)

Particular Values

L(12)L(\frac{1}{2}) \approx 2.3806349651.200115577i2.380634965 - 1.200115577i
L(12)L(\frac12) \approx 2.3806349651.200115577i2.380634965 - 1.200115577i
L(1)L(1) \approx 1.5864990690.4582778945i1.586499069 - 0.4582778945i
L(1)L(1) \approx 1.5864990690.4582778945i1.586499069 - 0.4582778945i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1 1
19 1 1
good2 1+(0.8780.478i)T 1 + (0.878 - 0.478i)T
5 1+(0.698+0.715i)T 1 + (-0.698 + 0.715i)T
11 1+(0.9880.149i)T 1 + (0.988 - 0.149i)T
13 1+(0.9800.198i)T 1 + (-0.980 - 0.198i)T
17 1+(0.9980.0498i)T 1 + (0.998 - 0.0498i)T
23 1+(0.542+0.840i)T 1 + (-0.542 + 0.840i)T
29 1+(0.9210.388i)T 1 + (0.921 - 0.388i)T
31 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
37 1+(0.222+0.974i)T 1 + (0.222 + 0.974i)T
41 1+(0.9690.246i)T 1 + (-0.969 - 0.246i)T
43 1+(0.995+0.0995i)T 1 + (0.995 + 0.0995i)T
47 1+(0.6610.749i)T 1 + (0.661 - 0.749i)T
53 1+(0.5420.840i)T 1 + (0.542 - 0.840i)T
59 1+(0.583+0.811i)T 1 + (-0.583 + 0.811i)T
61 1+(0.124+0.992i)T 1 + (-0.124 + 0.992i)T
67 1+(0.1730.984i)T 1 + (-0.173 - 0.984i)T
71 1+(0.1240.992i)T 1 + (-0.124 - 0.992i)T
73 1+(0.9800.198i)T 1 + (0.980 - 0.198i)T
79 1+(0.7660.642i)T 1 + (-0.766 - 0.642i)T
83 1+(0.988+0.149i)T 1 + (0.988 + 0.149i)T
89 1+(0.02490.999i)T 1 + (-0.0249 - 0.999i)T
97 1+(0.173+0.984i)T 1 + (-0.173 + 0.984i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−19.50779206736638345243905042916, −18.76696556521024288097172090374, −17.53196799890631521404656670486, −16.98178457038233051623722103773, −16.47877257286400469943441881562, −15.7751828754940482932308159204, −15.03752461815652272186920048627, −14.34536015152314757779893898666, −13.89780063229773980436461086159, −12.681126419383237371758494634685, −12.34485307791361931958292551122, −11.843171868245055049182006064744, −11.03950110232543851905786732161, −9.92555510521221649302837339708, −9.072618152785942202264172184337, −8.263649563769141907829868346784, −7.62063783845682725319180541658, −6.92634748506094151151694741716, −6.07167969552930185130202241429, −5.25537507946385211580759584812, −4.42689005042775576524536898551, −4.034408990693372076476669099284, −3.05732620559307456020291491883, −2.10547125270774390515923830254, −0.918713377416702862152689129843, 0.76638243810237850907681296114, 1.82363098682453294201228582534, 2.862440175671168241064001992668, 3.39493708618557931552328494445, 4.17805235648529012057747971511, 4.94000188909105756018229172603, 5.87054529851345549279000345202, 6.631070444200718231339002097580, 7.28914660988382650569329764502, 8.05970744383401204464390463400, 9.2257976344441773850974760243, 10.13960190948090704729131484790, 10.47663057445555191605757885542, 11.67237184795693996562604951956, 11.88776859993273548576609641011, 12.43866994291221042899054028519, 13.700878778312438480789993954990, 14.05990979820351169748125124060, 14.881087321817091960423542372417, 15.262740732431517329257520020761, 16.125173917940334328785449989608, 16.88213215578109625196215248874, 17.82132089818692422508371230275, 18.68915840353913257025163570185, 19.50629548418223786590685208628

Graph of the ZZ-function along the critical line