L(s) = 1 | + (0.623 − 0.781i)2-s + (−0.222 − 0.974i)4-s + (0.900 + 0.433i)5-s + (−0.900 − 0.433i)8-s + (0.900 − 0.433i)10-s + (0.988 + 0.149i)11-s + (−0.365 − 0.930i)13-s + (−0.900 + 0.433i)16-s + (0.733 + 0.680i)17-s + (0.222 − 0.974i)20-s + (0.733 − 0.680i)22-s + (0.733 − 0.680i)23-s + (0.623 + 0.781i)25-s + (−0.955 − 0.294i)26-s + (−0.733 − 0.680i)29-s + ⋯ |
L(s) = 1 | + (0.623 − 0.781i)2-s + (−0.222 − 0.974i)4-s + (0.900 + 0.433i)5-s + (−0.900 − 0.433i)8-s + (0.900 − 0.433i)10-s + (0.988 + 0.149i)11-s + (−0.365 − 0.930i)13-s + (−0.900 + 0.433i)16-s + (0.733 + 0.680i)17-s + (0.222 − 0.974i)20-s + (0.733 − 0.680i)22-s + (0.733 − 0.680i)23-s + (0.623 + 0.781i)25-s + (−0.955 − 0.294i)26-s + (−0.733 − 0.680i)29-s + ⋯ |
Λ(s)=(=(2793s/2ΓR(s)L(s)(0.326−0.945i)Λ(1−s)
Λ(s)=(=(2793s/2ΓR(s)L(s)(0.326−0.945i)Λ(1−s)
Degree: |
1 |
Conductor: |
2793
= 3⋅72⋅19
|
Sign: |
0.326−0.945i
|
Analytic conductor: |
12.9706 |
Root analytic conductor: |
12.9706 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2793(1376,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 2793, (0: ), 0.326−0.945i)
|
Particular Values
L(21) |
≈ |
2.498123575−1.779323198i |
L(21) |
≈ |
2.498123575−1.779323198i |
L(1) |
≈ |
1.609292363−0.7625010912i |
L(1) |
≈ |
1.609292363−0.7625010912i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 19 | 1 |
good | 2 | 1+(0.623−0.781i)T |
| 5 | 1+(0.900+0.433i)T |
| 11 | 1+(0.988+0.149i)T |
| 13 | 1+(−0.365−0.930i)T |
| 17 | 1+(0.733+0.680i)T |
| 23 | 1+(0.733−0.680i)T |
| 29 | 1+(−0.733−0.680i)T |
| 31 | 1+(0.5+0.866i)T |
| 37 | 1+(0.733+0.680i)T |
| 41 | 1+(0.0747+0.997i)T |
| 43 | 1+(0.826+0.563i)T |
| 47 | 1+(0.988+0.149i)T |
| 53 | 1+(−0.222−0.974i)T |
| 59 | 1+(0.0747−0.997i)T |
| 61 | 1+(0.955−0.294i)T |
| 67 | 1−T |
| 71 | 1+(−0.733+0.680i)T |
| 73 | 1+(−0.988+0.149i)T |
| 79 | 1−T |
| 83 | 1+(−0.623−0.781i)T |
| 89 | 1+(0.365−0.930i)T |
| 97 | 1+(0.5+0.866i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.247392896050778947244599815232, −18.54489404150253041778992003263, −17.631392899505023858018459564459, −17.04288311039053987994062046563, −16.63054533520752188400050766902, −15.96145133395643468220244209868, −14.92596237905908266591005368262, −14.36779258926640716317707580633, −13.78821397028589110763056976270, −13.22354272889937035226967600629, −12.27752643690385875508630414552, −11.852880543458264764482006138636, −10.90777500997062250915339405680, −9.637389020392057715653583446942, −9.19731543008163946920798024895, −8.64617383401568341859519606955, −7.32852910335378611914806726331, −7.0881156557816297042471044263, −5.875929566084849752120846613911, −5.67504279024934024118299291901, −4.60421389844155727609761181197, −4.02951874669967629729611378221, −2.982067661968992174064394423412, −2.08908720834858128617212116973, −1.00020833587783520949925397836,
0.95822139585253080851457387069, 1.66627070206080217306095897186, 2.6773664979679196339036052755, 3.20513383452719964698941761074, 4.19378766433262612890827155353, 5.016212303223876446110274718462, 5.86503836738130050998763790355, 6.33474642769757684753648802899, 7.23777929333949186252150061890, 8.39910208545301750113115019028, 9.306648467495962030343017386918, 9.939076824113328678734730158646, 10.44702372294225170363628658674, 11.24637990466229301356809482470, 11.97739744365129531427502232956, 12.890719670056732291920196096577, 13.1450341083973775356347186141, 14.27675261746566433186976171825, 14.59323961198725847397299525666, 15.14138638285907297471304287919, 16.245340729204150646981112346089, 17.35750828966269785580824733091, 17.521778617025489421082146789773, 18.68448703588520329110801941706, 19.02634746750532615853899954872