L(s) = 1 | + (0.623 − 0.781i)2-s + (−0.222 − 0.974i)4-s + (0.900 + 0.433i)5-s + (−0.900 − 0.433i)8-s + (0.900 − 0.433i)10-s + (0.988 + 0.149i)11-s + (−0.365 − 0.930i)13-s + (−0.900 + 0.433i)16-s + (0.733 + 0.680i)17-s + (0.222 − 0.974i)20-s + (0.733 − 0.680i)22-s + (0.733 − 0.680i)23-s + (0.623 + 0.781i)25-s + (−0.955 − 0.294i)26-s + (−0.733 − 0.680i)29-s + ⋯ |
L(s) = 1 | + (0.623 − 0.781i)2-s + (−0.222 − 0.974i)4-s + (0.900 + 0.433i)5-s + (−0.900 − 0.433i)8-s + (0.900 − 0.433i)10-s + (0.988 + 0.149i)11-s + (−0.365 − 0.930i)13-s + (−0.900 + 0.433i)16-s + (0.733 + 0.680i)17-s + (0.222 − 0.974i)20-s + (0.733 − 0.680i)22-s + (0.733 − 0.680i)23-s + (0.623 + 0.781i)25-s + (−0.955 − 0.294i)26-s + (−0.733 − 0.680i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.326 - 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.326 - 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.498123575 - 1.779323198i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.498123575 - 1.779323198i\) |
\(L(1)\) |
\(\approx\) |
\(1.609292363 - 0.7625010912i\) |
\(L(1)\) |
\(\approx\) |
\(1.609292363 - 0.7625010912i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (0.623 - 0.781i)T \) |
| 5 | \( 1 + (0.900 + 0.433i)T \) |
| 11 | \( 1 + (0.988 + 0.149i)T \) |
| 13 | \( 1 + (-0.365 - 0.930i)T \) |
| 17 | \( 1 + (0.733 + 0.680i)T \) |
| 23 | \( 1 + (0.733 - 0.680i)T \) |
| 29 | \( 1 + (-0.733 - 0.680i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.733 + 0.680i)T \) |
| 41 | \( 1 + (0.0747 + 0.997i)T \) |
| 43 | \( 1 + (0.826 + 0.563i)T \) |
| 47 | \( 1 + (0.988 + 0.149i)T \) |
| 53 | \( 1 + (-0.222 - 0.974i)T \) |
| 59 | \( 1 + (0.0747 - 0.997i)T \) |
| 61 | \( 1 + (0.955 - 0.294i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (-0.733 + 0.680i)T \) |
| 73 | \( 1 + (-0.988 + 0.149i)T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + (-0.623 - 0.781i)T \) |
| 89 | \( 1 + (0.365 - 0.930i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.247392896050778947244599815232, −18.54489404150253041778992003263, −17.631392899505023858018459564459, −17.04288311039053987994062046563, −16.63054533520752188400050766902, −15.96145133395643468220244209868, −14.92596237905908266591005368262, −14.36779258926640716317707580633, −13.78821397028589110763056976270, −13.22354272889937035226967600629, −12.27752643690385875508630414552, −11.852880543458264764482006138636, −10.90777500997062250915339405680, −9.637389020392057715653583446942, −9.19731543008163946920798024895, −8.64617383401568341859519606955, −7.32852910335378611914806726331, −7.0881156557816297042471044263, −5.875929566084849752120846613911, −5.67504279024934024118299291901, −4.60421389844155727609761181197, −4.02951874669967629729611378221, −2.982067661968992174064394423412, −2.08908720834858128617212116973, −1.00020833587783520949925397836,
0.95822139585253080851457387069, 1.66627070206080217306095897186, 2.6773664979679196339036052755, 3.20513383452719964698941761074, 4.19378766433262612890827155353, 5.016212303223876446110274718462, 5.86503836738130050998763790355, 6.33474642769757684753648802899, 7.23777929333949186252150061890, 8.39910208545301750113115019028, 9.306648467495962030343017386918, 9.939076824113328678734730158646, 10.44702372294225170363628658674, 11.24637990466229301356809482470, 11.97739744365129531427502232956, 12.890719670056732291920196096577, 13.1450341083973775356347186141, 14.27675261746566433186976171825, 14.59323961198725847397299525666, 15.14138638285907297471304287919, 16.245340729204150646981112346089, 17.35750828966269785580824733091, 17.521778617025489421082146789773, 18.68448703588520329110801941706, 19.02634746750532615853899954872