Properties

Label 1-2793-2793.1376-r0-0-0
Degree 11
Conductor 27932793
Sign 0.3260.945i0.326 - 0.945i
Analytic cond. 12.970612.9706
Root an. cond. 12.970612.9706
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.623 − 0.781i)2-s + (−0.222 − 0.974i)4-s + (0.900 + 0.433i)5-s + (−0.900 − 0.433i)8-s + (0.900 − 0.433i)10-s + (0.988 + 0.149i)11-s + (−0.365 − 0.930i)13-s + (−0.900 + 0.433i)16-s + (0.733 + 0.680i)17-s + (0.222 − 0.974i)20-s + (0.733 − 0.680i)22-s + (0.733 − 0.680i)23-s + (0.623 + 0.781i)25-s + (−0.955 − 0.294i)26-s + (−0.733 − 0.680i)29-s + ⋯
L(s)  = 1  + (0.623 − 0.781i)2-s + (−0.222 − 0.974i)4-s + (0.900 + 0.433i)5-s + (−0.900 − 0.433i)8-s + (0.900 − 0.433i)10-s + (0.988 + 0.149i)11-s + (−0.365 − 0.930i)13-s + (−0.900 + 0.433i)16-s + (0.733 + 0.680i)17-s + (0.222 − 0.974i)20-s + (0.733 − 0.680i)22-s + (0.733 − 0.680i)23-s + (0.623 + 0.781i)25-s + (−0.955 − 0.294i)26-s + (−0.733 − 0.680i)29-s + ⋯

Functional equation

Λ(s)=(2793s/2ΓR(s)L(s)=((0.3260.945i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.326 - 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(2793s/2ΓR(s)L(s)=((0.3260.945i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.326 - 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 27932793    =    372193 \cdot 7^{2} \cdot 19
Sign: 0.3260.945i0.326 - 0.945i
Analytic conductor: 12.970612.9706
Root analytic conductor: 12.970612.9706
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ2793(1376,)\chi_{2793} (1376, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 2793, (0: ), 0.3260.945i)(1,\ 2793,\ (0:\ ),\ 0.326 - 0.945i)

Particular Values

L(12)L(\frac{1}{2}) \approx 2.4981235751.779323198i2.498123575 - 1.779323198i
L(12)L(\frac12) \approx 2.4981235751.779323198i2.498123575 - 1.779323198i
L(1)L(1) \approx 1.6092923630.7625010912i1.609292363 - 0.7625010912i
L(1)L(1) \approx 1.6092923630.7625010912i1.609292363 - 0.7625010912i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1 1
19 1 1
good2 1+(0.6230.781i)T 1 + (0.623 - 0.781i)T
5 1+(0.900+0.433i)T 1 + (0.900 + 0.433i)T
11 1+(0.988+0.149i)T 1 + (0.988 + 0.149i)T
13 1+(0.3650.930i)T 1 + (-0.365 - 0.930i)T
17 1+(0.733+0.680i)T 1 + (0.733 + 0.680i)T
23 1+(0.7330.680i)T 1 + (0.733 - 0.680i)T
29 1+(0.7330.680i)T 1 + (-0.733 - 0.680i)T
31 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
37 1+(0.733+0.680i)T 1 + (0.733 + 0.680i)T
41 1+(0.0747+0.997i)T 1 + (0.0747 + 0.997i)T
43 1+(0.826+0.563i)T 1 + (0.826 + 0.563i)T
47 1+(0.988+0.149i)T 1 + (0.988 + 0.149i)T
53 1+(0.2220.974i)T 1 + (-0.222 - 0.974i)T
59 1+(0.07470.997i)T 1 + (0.0747 - 0.997i)T
61 1+(0.9550.294i)T 1 + (0.955 - 0.294i)T
67 1T 1 - T
71 1+(0.733+0.680i)T 1 + (-0.733 + 0.680i)T
73 1+(0.988+0.149i)T 1 + (-0.988 + 0.149i)T
79 1T 1 - T
83 1+(0.6230.781i)T 1 + (-0.623 - 0.781i)T
89 1+(0.3650.930i)T 1 + (0.365 - 0.930i)T
97 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−19.247392896050778947244599815232, −18.54489404150253041778992003263, −17.631392899505023858018459564459, −17.04288311039053987994062046563, −16.63054533520752188400050766902, −15.96145133395643468220244209868, −14.92596237905908266591005368262, −14.36779258926640716317707580633, −13.78821397028589110763056976270, −13.22354272889937035226967600629, −12.27752643690385875508630414552, −11.852880543458264764482006138636, −10.90777500997062250915339405680, −9.637389020392057715653583446942, −9.19731543008163946920798024895, −8.64617383401568341859519606955, −7.32852910335378611914806726331, −7.0881156557816297042471044263, −5.875929566084849752120846613911, −5.67504279024934024118299291901, −4.60421389844155727609761181197, −4.02951874669967629729611378221, −2.982067661968992174064394423412, −2.08908720834858128617212116973, −1.00020833587783520949925397836, 0.95822139585253080851457387069, 1.66627070206080217306095897186, 2.6773664979679196339036052755, 3.20513383452719964698941761074, 4.19378766433262612890827155353, 5.016212303223876446110274718462, 5.86503836738130050998763790355, 6.33474642769757684753648802899, 7.23777929333949186252150061890, 8.39910208545301750113115019028, 9.306648467495962030343017386918, 9.939076824113328678734730158646, 10.44702372294225170363628658674, 11.24637990466229301356809482470, 11.97739744365129531427502232956, 12.890719670056732291920196096577, 13.1450341083973775356347186141, 14.27675261746566433186976171825, 14.59323961198725847397299525666, 15.14138638285907297471304287919, 16.245340729204150646981112346089, 17.35750828966269785580824733091, 17.521778617025489421082146789773, 18.68448703588520329110801941706, 19.02634746750532615853899954872

Graph of the ZZ-function along the critical line