L(s) = 1 | + (0.207 + 0.978i)2-s + (0.965 − 0.258i)3-s + (−0.913 + 0.406i)4-s + (0.994 + 0.104i)5-s + (0.453 + 0.891i)6-s + (−0.587 − 0.809i)8-s + (0.866 − 0.5i)9-s + (0.104 + 0.994i)10-s + (−0.629 + 0.777i)11-s + (−0.777 + 0.629i)12-s + (−0.891 + 0.453i)13-s + (0.987 − 0.156i)15-s + (0.669 − 0.743i)16-s + (0.777 + 0.629i)17-s + (0.669 + 0.743i)18-s + (0.0523 + 0.998i)19-s + ⋯ |
L(s) = 1 | + (0.207 + 0.978i)2-s + (0.965 − 0.258i)3-s + (−0.913 + 0.406i)4-s + (0.994 + 0.104i)5-s + (0.453 + 0.891i)6-s + (−0.587 − 0.809i)8-s + (0.866 − 0.5i)9-s + (0.104 + 0.994i)10-s + (−0.629 + 0.777i)11-s + (−0.777 + 0.629i)12-s + (−0.891 + 0.453i)13-s + (0.987 − 0.156i)15-s + (0.669 − 0.743i)16-s + (0.777 + 0.629i)17-s + (0.669 + 0.743i)18-s + (0.0523 + 0.998i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.143 + 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.143 + 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.475314674 + 1.276666729i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.475314674 + 1.276666729i\) |
\(L(1)\) |
\(\approx\) |
\(1.401264044 + 0.7679671170i\) |
\(L(1)\) |
\(\approx\) |
\(1.401264044 + 0.7679671170i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 41 | \( 1 \) |
good | 2 | \( 1 + (0.207 + 0.978i)T \) |
| 3 | \( 1 + (0.965 - 0.258i)T \) |
| 5 | \( 1 + (0.994 + 0.104i)T \) |
| 11 | \( 1 + (-0.629 + 0.777i)T \) |
| 13 | \( 1 + (-0.891 + 0.453i)T \) |
| 17 | \( 1 + (0.777 + 0.629i)T \) |
| 19 | \( 1 + (0.0523 + 0.998i)T \) |
| 23 | \( 1 + (0.978 - 0.207i)T \) |
| 29 | \( 1 + (-0.156 - 0.987i)T \) |
| 31 | \( 1 + (-0.104 - 0.994i)T \) |
| 37 | \( 1 + (-0.104 + 0.994i)T \) |
| 43 | \( 1 + (-0.951 - 0.309i)T \) |
| 47 | \( 1 + (0.544 - 0.838i)T \) |
| 53 | \( 1 + (-0.933 - 0.358i)T \) |
| 59 | \( 1 + (-0.669 - 0.743i)T \) |
| 61 | \( 1 + (0.743 + 0.669i)T \) |
| 67 | \( 1 + (0.358 - 0.933i)T \) |
| 71 | \( 1 + (-0.987 - 0.156i)T \) |
| 73 | \( 1 + (-0.866 - 0.5i)T \) |
| 79 | \( 1 + (-0.258 + 0.965i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (-0.998 + 0.0523i)T \) |
| 97 | \( 1 + (-0.987 + 0.156i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.34478143708158173232402869294, −24.52937645811218456435067645326, −23.45965385792317125560964773476, −22.084984234049953557740142267570, −21.5855594568772889286778061414, −20.84564032393410437602267984049, −20.05086566282701155430865510266, −19.14049612710797116452946399656, −18.31571086793819350926135684052, −17.33974110394565739958808475024, −16.03371287757256815214175973916, −14.72723845632925206388145977523, −14.08001908265510402890401156575, −13.223723764518325557987965504095, −12.570676272343258963599193019836, −11.00466320354175738493248588026, −10.19636799404961689421305230959, −9.34754205233796207836402818857, −8.634672339169411850076796203216, −7.26896479948833981744019962982, −5.46085299878792493894350665516, −4.804568092297929282701949686488, −3.111441343045951072868410160526, −2.69131566684462745541947175926, −1.29579085839499901878280220855,
1.7733733997279216209591572248, 2.998110318793723991085271108658, 4.36015435308753534675368976664, 5.48900311853134785536336152994, 6.645341723334078560123619396364, 7.53240049721798761105837012081, 8.42330916287130644951915429635, 9.66111124571035972140008145088, 10.02064054758170983160521351689, 12.27914282731788295198868946638, 13.03610075069161882081830546945, 13.84887554658019343719201068364, 14.74797173176336255080240535170, 15.19980808074681360395338787159, 16.68276784215170380185673225543, 17.34921624524319705608543968315, 18.49193574407361302707237918529, 19.000058595244290398730755492520, 20.58352344588688576703147721438, 21.205533306563605617415823465711, 22.152920171574547336701498431633, 23.24530011098577544710895344714, 24.1845305558995984481508749491, 25.04574842691323177403142213748, 25.531146223709073948157009241756