L(s) = 1 | + (−0.951 + 0.309i)2-s + (−0.707 + 0.707i)3-s + (0.809 − 0.587i)4-s + (−0.587 − 0.809i)5-s + (0.453 − 0.891i)6-s + (−0.587 + 0.809i)8-s − i·9-s + (0.809 + 0.587i)10-s + (0.987 − 0.156i)11-s + (−0.156 + 0.987i)12-s + (−0.891 − 0.453i)13-s + (0.987 + 0.156i)15-s + (0.309 − 0.951i)16-s + (0.156 + 0.987i)17-s + (0.309 + 0.951i)18-s + (−0.891 + 0.453i)19-s + ⋯ |
L(s) = 1 | + (−0.951 + 0.309i)2-s + (−0.707 + 0.707i)3-s + (0.809 − 0.587i)4-s + (−0.587 − 0.809i)5-s + (0.453 − 0.891i)6-s + (−0.587 + 0.809i)8-s − i·9-s + (0.809 + 0.587i)10-s + (0.987 − 0.156i)11-s + (−0.156 + 0.987i)12-s + (−0.891 − 0.453i)13-s + (0.987 + 0.156i)15-s + (0.309 − 0.951i)16-s + (0.156 + 0.987i)17-s + (0.309 + 0.951i)18-s + (−0.891 + 0.453i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.857 - 0.514i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.857 - 0.514i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.01320518612 - 0.04762435569i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.01320518612 - 0.04762435569i\) |
\(L(1)\) |
\(\approx\) |
\(0.3944905532 + 0.05002633371i\) |
\(L(1)\) |
\(\approx\) |
\(0.3944905532 + 0.05002633371i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 41 | \( 1 \) |
good | 2 | \( 1 + (-0.951 + 0.309i)T \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (-0.587 - 0.809i)T \) |
| 11 | \( 1 + (0.987 - 0.156i)T \) |
| 13 | \( 1 + (-0.891 - 0.453i)T \) |
| 17 | \( 1 + (0.156 + 0.987i)T \) |
| 19 | \( 1 + (-0.891 + 0.453i)T \) |
| 23 | \( 1 + (-0.309 - 0.951i)T \) |
| 29 | \( 1 + (-0.156 + 0.987i)T \) |
| 31 | \( 1 + (-0.809 - 0.587i)T \) |
| 37 | \( 1 + (-0.809 + 0.587i)T \) |
| 43 | \( 1 + (-0.951 + 0.309i)T \) |
| 47 | \( 1 + (0.453 - 0.891i)T \) |
| 53 | \( 1 + (0.156 - 0.987i)T \) |
| 59 | \( 1 + (-0.309 - 0.951i)T \) |
| 61 | \( 1 + (-0.951 - 0.309i)T \) |
| 67 | \( 1 + (-0.987 - 0.156i)T \) |
| 71 | \( 1 + (-0.987 + 0.156i)T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (-0.707 + 0.707i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (0.453 + 0.891i)T \) |
| 97 | \( 1 + (-0.987 - 0.156i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.94892813196703618228448475088, −25.07202954987052247847943004565, −24.22817210392859544094232227294, −23.20464678200582398332045907776, −22.24659117040032619815701375986, −21.53894620370766353574812487797, −19.94269908710686469808239888862, −19.36840877213129112794341728178, −18.69173396924767365252357852002, −17.72586484774175659900244053980, −17.06779915250308863331847825568, −16.105656884988682618136668934095, −15.00814792138266830275306141009, −13.8058310015489439609748863027, −12.32471442036523257198668706035, −11.76522519111166844694740462483, −11.04670931443345408693074916180, −10.001019230802206335290385777944, −8.85244010508425940085928285401, −7.39801872732133623446227999329, −7.148923222598620176355277605425, −6.042355222343040641083689366979, −4.27463108249500321299236688705, −2.79562581364314104090733565034, −1.66212235816131730430292136866,
0.04937912902229875504119660387, 1.5688189313646799219924639633, 3.60982103635311005439137838073, 4.79179792467507048245804318368, 5.86552334241619985067914602626, 6.88533849839207900942757271863, 8.23176169734429938206837273673, 8.984897569421301896275778283320, 10.01524343269579630246971130244, 10.85957329445200218711994914053, 11.92828788757834679310569288755, 12.563584954167717299325338108578, 14.68994720314889977509171839726, 15.13410580522749388555540317890, 16.39645099948782666972436710675, 16.803383280478362604051740941940, 17.47724497970238008529350019159, 18.744353557910018807062570117765, 19.76374606862540059252751143929, 20.382209019925964587077866128539, 21.46292075692729258504093652038, 22.49054744840485379050400231964, 23.62113944421060318952731089329, 24.23531063663506638795345621186, 25.18397792823065283743335055050