L(s) = 1 | + (0.990 + 0.139i)2-s + (0.961 + 0.275i)4-s + (−0.374 + 0.927i)5-s + (0.559 + 0.829i)7-s + (0.913 + 0.406i)8-s + (−0.5 + 0.866i)10-s + (−0.882 − 0.469i)13-s + (0.438 + 0.898i)14-s + (0.848 + 0.529i)16-s + (−0.978 − 0.207i)17-s + (0.913 + 0.406i)19-s + (−0.615 + 0.788i)20-s + (−0.939 + 0.342i)23-s + (−0.719 − 0.694i)25-s + (−0.809 − 0.587i)26-s + ⋯ |
L(s) = 1 | + (0.990 + 0.139i)2-s + (0.961 + 0.275i)4-s + (−0.374 + 0.927i)5-s + (0.559 + 0.829i)7-s + (0.913 + 0.406i)8-s + (−0.5 + 0.866i)10-s + (−0.882 − 0.469i)13-s + (0.438 + 0.898i)14-s + (0.848 + 0.529i)16-s + (−0.978 − 0.207i)17-s + (0.913 + 0.406i)19-s + (−0.615 + 0.788i)20-s + (−0.939 + 0.342i)23-s + (−0.719 − 0.694i)25-s + (−0.809 − 0.587i)26-s + ⋯ |
Λ(s)=(=(297s/2ΓR(s)L(s)(0.320+0.947i)Λ(1−s)
Λ(s)=(=(297s/2ΓR(s)L(s)(0.320+0.947i)Λ(1−s)
Degree: |
1 |
Conductor: |
297
= 33⋅11
|
Sign: |
0.320+0.947i
|
Analytic conductor: |
1.37926 |
Root analytic conductor: |
1.37926 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ297(124,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 297, (0: ), 0.320+0.947i)
|
Particular Values
L(21) |
≈ |
1.800641718+1.291618702i |
L(21) |
≈ |
1.800641718+1.291618702i |
L(1) |
≈ |
1.694144000+0.6380581422i |
L(1) |
≈ |
1.694144000+0.6380581422i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+(0.990+0.139i)T |
| 5 | 1+(−0.374+0.927i)T |
| 7 | 1+(0.559+0.829i)T |
| 13 | 1+(−0.882−0.469i)T |
| 17 | 1+(−0.978−0.207i)T |
| 19 | 1+(0.913+0.406i)T |
| 23 | 1+(−0.939+0.342i)T |
| 29 | 1+(0.438−0.898i)T |
| 31 | 1+(0.0348+0.999i)T |
| 37 | 1+(0.913−0.406i)T |
| 41 | 1+(0.438+0.898i)T |
| 43 | 1+(0.766−0.642i)T |
| 47 | 1+(0.961−0.275i)T |
| 53 | 1+(0.309−0.951i)T |
| 59 | 1+(−0.241−0.970i)T |
| 61 | 1+(0.0348−0.999i)T |
| 67 | 1+(0.173−0.984i)T |
| 71 | 1+(−0.978−0.207i)T |
| 73 | 1+(−0.104+0.994i)T |
| 79 | 1+(0.990+0.139i)T |
| 83 | 1+(−0.882+0.469i)T |
| 89 | 1+(−0.5−0.866i)T |
| 97 | 1+(−0.374−0.927i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−24.71807402232376732123523252968, −24.11972106191400555868349012844, −23.70467327452170671393868187447, −22.48263582581793503932309070052, −21.71766562573543317592342910378, −20.5995923980609907883997153908, −20.117915674091439017692262491334, −19.37714801246734289330447996816, −17.76376832497049180085007080664, −16.75824765830153345988296233270, −16.04194222751267453796077527200, −15.00370327064771597251043682679, −14.01334054678914868004984418635, −13.273142059684876357683203821775, −12.23458707034068667435220705355, −11.51261826652725842495605535174, −10.49657149597928022410130589626, −9.24471306559886262685185991391, −7.842942678134959058458421952654, −7.07872682548862942673567448100, −5.68757715107887982602669445241, −4.52482845187939871949186826279, −4.154781823949846642273703600889, −2.4847560563272372061199803112, −1.14966247100462094236253568756,
2.13017803168992016729466504894, 2.9296894070621187976271198521, 4.186310001760543752903279442370, 5.29437258469125370515202753617, 6.2661130458613775914124902716, 7.37698258367919008096047690307, 8.149985390819100194610184556441, 9.80841774261703048399794979620, 10.98889826683631986721512757750, 11.75012868169819734129713940116, 12.4838302562975690720758530866, 13.85163055902287632452101086324, 14.52009298493945639294363018109, 15.400931958165234430192903675028, 15.95080272391547894813145254806, 17.47261144509647935936550082083, 18.254700384200941299988859310217, 19.48102791527431384023622720471, 20.222292250305792287617694861251, 21.4601234638574454136262592507, 22.08862136586879537429303220723, 22.72596902186066527129423092434, 23.747018026375035655569697008945, 24.65238851276116195162031048099, 25.2418910879304957619302939494