Properties

Label 1-297-297.124-r0-0-0
Degree 11
Conductor 297297
Sign 0.320+0.947i0.320 + 0.947i
Analytic cond. 1.379261.37926
Root an. cond. 1.379261.37926
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.990 + 0.139i)2-s + (0.961 + 0.275i)4-s + (−0.374 + 0.927i)5-s + (0.559 + 0.829i)7-s + (0.913 + 0.406i)8-s + (−0.5 + 0.866i)10-s + (−0.882 − 0.469i)13-s + (0.438 + 0.898i)14-s + (0.848 + 0.529i)16-s + (−0.978 − 0.207i)17-s + (0.913 + 0.406i)19-s + (−0.615 + 0.788i)20-s + (−0.939 + 0.342i)23-s + (−0.719 − 0.694i)25-s + (−0.809 − 0.587i)26-s + ⋯
L(s)  = 1  + (0.990 + 0.139i)2-s + (0.961 + 0.275i)4-s + (−0.374 + 0.927i)5-s + (0.559 + 0.829i)7-s + (0.913 + 0.406i)8-s + (−0.5 + 0.866i)10-s + (−0.882 − 0.469i)13-s + (0.438 + 0.898i)14-s + (0.848 + 0.529i)16-s + (−0.978 − 0.207i)17-s + (0.913 + 0.406i)19-s + (−0.615 + 0.788i)20-s + (−0.939 + 0.342i)23-s + (−0.719 − 0.694i)25-s + (−0.809 − 0.587i)26-s + ⋯

Functional equation

Λ(s)=(297s/2ΓR(s)L(s)=((0.320+0.947i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.320 + 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(297s/2ΓR(s)L(s)=((0.320+0.947i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.320 + 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 297297    =    33113^{3} \cdot 11
Sign: 0.320+0.947i0.320 + 0.947i
Analytic conductor: 1.379261.37926
Root analytic conductor: 1.379261.37926
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ297(124,)\chi_{297} (124, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 297, (0: ), 0.320+0.947i)(1,\ 297,\ (0:\ ),\ 0.320 + 0.947i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.800641718+1.291618702i1.800641718 + 1.291618702i
L(12)L(\frac12) \approx 1.800641718+1.291618702i1.800641718 + 1.291618702i
L(1)L(1) \approx 1.694144000+0.6380581422i1.694144000 + 0.6380581422i
L(1)L(1) \approx 1.694144000+0.6380581422i1.694144000 + 0.6380581422i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
11 1 1
good2 1+(0.990+0.139i)T 1 + (0.990 + 0.139i)T
5 1+(0.374+0.927i)T 1 + (-0.374 + 0.927i)T
7 1+(0.559+0.829i)T 1 + (0.559 + 0.829i)T
13 1+(0.8820.469i)T 1 + (-0.882 - 0.469i)T
17 1+(0.9780.207i)T 1 + (-0.978 - 0.207i)T
19 1+(0.913+0.406i)T 1 + (0.913 + 0.406i)T
23 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
29 1+(0.4380.898i)T 1 + (0.438 - 0.898i)T
31 1+(0.0348+0.999i)T 1 + (0.0348 + 0.999i)T
37 1+(0.9130.406i)T 1 + (0.913 - 0.406i)T
41 1+(0.438+0.898i)T 1 + (0.438 + 0.898i)T
43 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
47 1+(0.9610.275i)T 1 + (0.961 - 0.275i)T
53 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
59 1+(0.2410.970i)T 1 + (-0.241 - 0.970i)T
61 1+(0.03480.999i)T 1 + (0.0348 - 0.999i)T
67 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
71 1+(0.9780.207i)T 1 + (-0.978 - 0.207i)T
73 1+(0.104+0.994i)T 1 + (-0.104 + 0.994i)T
79 1+(0.990+0.139i)T 1 + (0.990 + 0.139i)T
83 1+(0.882+0.469i)T 1 + (-0.882 + 0.469i)T
89 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
97 1+(0.3740.927i)T 1 + (-0.374 - 0.927i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−24.71807402232376732123523252968, −24.11972106191400555868349012844, −23.70467327452170671393868187447, −22.48263582581793503932309070052, −21.71766562573543317592342910378, −20.5995923980609907883997153908, −20.117915674091439017692262491334, −19.37714801246734289330447996816, −17.76376832497049180085007080664, −16.75824765830153345988296233270, −16.04194222751267453796077527200, −15.00370327064771597251043682679, −14.01334054678914868004984418635, −13.273142059684876357683203821775, −12.23458707034068667435220705355, −11.51261826652725842495605535174, −10.49657149597928022410130589626, −9.24471306559886262685185991391, −7.842942678134959058458421952654, −7.07872682548862942673567448100, −5.68757715107887982602669445241, −4.52482845187939871949186826279, −4.154781823949846642273703600889, −2.4847560563272372061199803112, −1.14966247100462094236253568756, 2.13017803168992016729466504894, 2.9296894070621187976271198521, 4.186310001760543752903279442370, 5.29437258469125370515202753617, 6.2661130458613775914124902716, 7.37698258367919008096047690307, 8.149985390819100194610184556441, 9.80841774261703048399794979620, 10.98889826683631986721512757750, 11.75012868169819734129713940116, 12.4838302562975690720758530866, 13.85163055902287632452101086324, 14.52009298493945639294363018109, 15.400931958165234430192903675028, 15.95080272391547894813145254806, 17.47261144509647935936550082083, 18.254700384200941299988859310217, 19.48102791527431384023622720471, 20.222292250305792287617694861251, 21.4601234638574454136262592507, 22.08862136586879537429303220723, 22.72596902186066527129423092434, 23.747018026375035655569697008945, 24.65238851276116195162031048099, 25.2418910879304957619302939494

Graph of the ZZ-function along the critical line