L(s) = 1 | + (0.374 − 0.927i)2-s + (−0.719 − 0.694i)4-s + (−0.615 + 0.788i)5-s + (−0.438 − 0.898i)7-s + (−0.913 + 0.406i)8-s + (0.5 + 0.866i)10-s + (−0.848 − 0.529i)13-s + (−0.997 + 0.0697i)14-s + (0.0348 + 0.999i)16-s + (0.978 − 0.207i)17-s + (−0.913 + 0.406i)19-s + (0.990 − 0.139i)20-s + (0.173 + 0.984i)23-s + (−0.241 − 0.970i)25-s + (−0.809 + 0.587i)26-s + ⋯ |
L(s) = 1 | + (0.374 − 0.927i)2-s + (−0.719 − 0.694i)4-s + (−0.615 + 0.788i)5-s + (−0.438 − 0.898i)7-s + (−0.913 + 0.406i)8-s + (0.5 + 0.866i)10-s + (−0.848 − 0.529i)13-s + (−0.997 + 0.0697i)14-s + (0.0348 + 0.999i)16-s + (0.978 − 0.207i)17-s + (−0.913 + 0.406i)19-s + (0.990 − 0.139i)20-s + (0.173 + 0.984i)23-s + (−0.241 − 0.970i)25-s + (−0.809 + 0.587i)26-s + ⋯ |
Λ(s)=(=(297s/2ΓR(s+1)L(s)(0.999+0.0235i)Λ(1−s)
Λ(s)=(=(297s/2ΓR(s+1)L(s)(0.999+0.0235i)Λ(1−s)
Degree: |
1 |
Conductor: |
297
= 33⋅11
|
Sign: |
0.999+0.0235i
|
Analytic conductor: |
31.9170 |
Root analytic conductor: |
31.9170 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ297(139,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 297, (1: ), 0.999+0.0235i)
|
Particular Values
L(21) |
≈ |
1.108072537+0.01304853622i |
L(21) |
≈ |
1.108072537+0.01304853622i |
L(1) |
≈ |
0.8452901099−0.3470244499i |
L(1) |
≈ |
0.8452901099−0.3470244499i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+(0.374−0.927i)T |
| 5 | 1+(−0.615+0.788i)T |
| 7 | 1+(−0.438−0.898i)T |
| 13 | 1+(−0.848−0.529i)T |
| 17 | 1+(0.978−0.207i)T |
| 19 | 1+(−0.913+0.406i)T |
| 23 | 1+(0.173+0.984i)T |
| 29 | 1+(0.997+0.0697i)T |
| 31 | 1+(−0.882+0.469i)T |
| 37 | 1+(0.913+0.406i)T |
| 41 | 1+(0.997−0.0697i)T |
| 43 | 1+(0.939−0.342i)T |
| 47 | 1+(−0.719+0.694i)T |
| 53 | 1+(0.309+0.951i)T |
| 59 | 1+(0.961−0.275i)T |
| 61 | 1+(0.882+0.469i)T |
| 67 | 1+(0.766−0.642i)T |
| 71 | 1+(−0.978+0.207i)T |
| 73 | 1+(0.104+0.994i)T |
| 79 | 1+(0.374−0.927i)T |
| 83 | 1+(−0.848+0.529i)T |
| 89 | 1+(−0.5+0.866i)T |
| 97 | 1+(−0.615−0.788i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.04208190936751366120425918051, −24.30600778542685762141288888627, −23.53949189427018829077001504538, −22.67661258527049657922215278635, −21.67727003959375693276126688322, −21.000345326608760472622690183163, −19.55366953383034368815877365952, −18.8621507048727738537207216713, −17.67405624024172920524595805284, −16.58239269385790875136836319298, −16.178757759799257223942782203908, −15.04175867628418346668901652500, −14.46419566644899130721774734813, −12.908059796490101527109065760045, −12.52867801130910598885347958396, −11.57218504358057992990885359609, −9.7497996462150064009947179577, −8.85675740715613638961741932573, −8.087129766815751647764499079260, −6.9676287244380706291511472817, −5.86371770644088503748721975744, −4.886412822986081756280421355956, −3.965641654034544804599959220089, −2.55915481920188186667193041, −0.382834677616864245425270406213,
0.92303509318712725631920927982, 2.62028151058386768291537731153, 3.50248704800667462344483841317, 4.40895160445655698061087313753, 5.76723827528565672485493045738, 7.04626244023824728293758191322, 8.03250426893427029981481392451, 9.61155896748122371618240043619, 10.346444042449925316546445236252, 11.104166637330289616372234298077, 12.18485230481046599001745616412, 12.96813242664617046717889138413, 14.18123236312591223454431270830, 14.71173364922515294612952530633, 15.88142612580241670927776271612, 17.16603064517229604283896121192, 18.14462710098420584013241752042, 19.31373205008996166581170476404, 19.55727544574220025388693675927, 20.626909431159706262012906525449, 21.65184204091045419651054485735, 22.51026271446058951645811533737, 23.29235739441394503434335437954, 23.72106282082097843301913113407, 25.26644217670191984892813521796