L(s) = 1 | + (0.438 − 0.898i)2-s + (−0.615 − 0.788i)4-s + (0.997 + 0.0697i)5-s + (−0.0348 + 0.999i)7-s + (−0.978 + 0.207i)8-s + (0.5 − 0.866i)10-s + (0.719 − 0.694i)13-s + (0.882 + 0.469i)14-s + (−0.241 + 0.970i)16-s + (−0.104 − 0.994i)17-s + (0.978 − 0.207i)19-s + (−0.559 − 0.829i)20-s + (0.939 − 0.342i)23-s + (0.990 + 0.139i)25-s + (−0.309 − 0.951i)26-s + ⋯ |
L(s) = 1 | + (0.438 − 0.898i)2-s + (−0.615 − 0.788i)4-s + (0.997 + 0.0697i)5-s + (−0.0348 + 0.999i)7-s + (−0.978 + 0.207i)8-s + (0.5 − 0.866i)10-s + (0.719 − 0.694i)13-s + (0.882 + 0.469i)14-s + (−0.241 + 0.970i)16-s + (−0.104 − 0.994i)17-s + (0.978 − 0.207i)19-s + (−0.559 − 0.829i)20-s + (0.939 − 0.342i)23-s + (0.990 + 0.139i)25-s + (−0.309 − 0.951i)26-s + ⋯ |
Λ(s)=(=(297s/2ΓR(s)L(s)(0.299−0.954i)Λ(1−s)
Λ(s)=(=(297s/2ΓR(s)L(s)(0.299−0.954i)Λ(1−s)
Degree: |
1 |
Conductor: |
297
= 33⋅11
|
Sign: |
0.299−0.954i
|
Analytic conductor: |
1.37926 |
Root analytic conductor: |
1.37926 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ297(200,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 297, (0: ), 0.299−0.954i)
|
Particular Values
L(21) |
≈ |
1.404527172−1.031596089i |
L(21) |
≈ |
1.404527172−1.031596089i |
L(1) |
≈ |
1.292779712−0.6443199199i |
L(1) |
≈ |
1.292779712−0.6443199199i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+(0.438−0.898i)T |
| 5 | 1+(0.997+0.0697i)T |
| 7 | 1+(−0.0348+0.999i)T |
| 13 | 1+(0.719−0.694i)T |
| 17 | 1+(−0.104−0.994i)T |
| 19 | 1+(0.978−0.207i)T |
| 23 | 1+(0.939−0.342i)T |
| 29 | 1+(−0.882+0.469i)T |
| 31 | 1+(0.961+0.275i)T |
| 37 | 1+(−0.978−0.207i)T |
| 41 | 1+(−0.882−0.469i)T |
| 43 | 1+(−0.766+0.642i)T |
| 47 | 1+(0.615−0.788i)T |
| 53 | 1+(0.809+0.587i)T |
| 59 | 1+(0.374−0.927i)T |
| 61 | 1+(−0.961+0.275i)T |
| 67 | 1+(0.173−0.984i)T |
| 71 | 1+(0.104+0.994i)T |
| 73 | 1+(−0.669+0.743i)T |
| 79 | 1+(−0.438+0.898i)T |
| 83 | 1+(−0.719−0.694i)T |
| 89 | 1+(0.5+0.866i)T |
| 97 | 1+(−0.997+0.0697i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.638232048285094470202873117617, −24.6097100891218613750215356775, −23.89079109649722090696822277543, −22.995046188338837900714076840819, −22.1584220960854496645884268504, −21.15367443421065987502799495674, −20.58088489823186163419902704749, −19.05351547556389238656507420759, −18.01892928714355420993773417313, −17.08934513654327840314593731497, −16.68022316255002883048719711391, −15.48778689941938777365271501858, −14.42937215311432251862820112088, −13.53715449380780178434025547108, −13.221025371408769446500018799421, −11.79084613461161507743047806408, −10.46723916029688932507132805876, −9.44390856308633985164940805859, −8.45662798265228823780723932119, −7.239679410050579366192473851955, −6.411197119588251285109180317724, −5.46285395288498208666982786550, −4.31463193527452718863632950722, −3.26094274599546926700751653736, −1.45614762242950874673891094400,
1.26134056654454969141545415057, 2.51526720876764470313530530127, 3.28593872489525045527563746834, 5.0796732943432136998538634251, 5.54403129187255697737579686477, 6.74552266195831832969460972301, 8.62966329182713257554747216320, 9.33919071620117747342542858493, 10.27947179420189165000449253591, 11.28466514811109544324604993023, 12.23662699943480037887264845209, 13.21352662444693770301163704599, 13.870188022139380651270202112441, 14.9422903744145244951133498777, 15.842702032987540869749524176657, 17.34551058761012307257895078890, 18.360463317018568972814650361582, 18.63563246160129511939117219823, 20.10182150966512939617901181079, 20.8120017860996335130707046615, 21.588487217351474255464005801338, 22.41667889412787230075649680363, 23.00989551277378193834082729010, 24.519414820613054147537727379514, 24.95471072347500763950349175852