L(s) = 1 | + (0.997 − 0.0697i)2-s + (0.990 − 0.139i)4-s + (0.559 − 0.829i)5-s + (0.882 − 0.469i)7-s + (0.978 − 0.207i)8-s + (0.5 − 0.866i)10-s + (0.241 + 0.970i)13-s + (0.848 − 0.529i)14-s + (0.961 − 0.275i)16-s + (0.104 + 0.994i)17-s + (0.978 − 0.207i)19-s + (0.438 − 0.898i)20-s + (0.173 − 0.984i)23-s + (−0.374 − 0.927i)25-s + (0.309 + 0.951i)26-s + ⋯ |
L(s) = 1 | + (0.997 − 0.0697i)2-s + (0.990 − 0.139i)4-s + (0.559 − 0.829i)5-s + (0.882 − 0.469i)7-s + (0.978 − 0.207i)8-s + (0.5 − 0.866i)10-s + (0.241 + 0.970i)13-s + (0.848 − 0.529i)14-s + (0.961 − 0.275i)16-s + (0.104 + 0.994i)17-s + (0.978 − 0.207i)19-s + (0.438 − 0.898i)20-s + (0.173 − 0.984i)23-s + (−0.374 − 0.927i)25-s + (0.309 + 0.951i)26-s + ⋯ |
Λ(s)=(=(297s/2ΓR(s+1)L(s)(0.736−0.676i)Λ(1−s)
Λ(s)=(=(297s/2ΓR(s+1)L(s)(0.736−0.676i)Λ(1−s)
Degree: |
1 |
Conductor: |
297
= 33⋅11
|
Sign: |
0.736−0.676i
|
Analytic conductor: |
31.9170 |
Root analytic conductor: |
31.9170 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ297(277,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 297, (1: ), 0.736−0.676i)
|
Particular Values
L(21) |
≈ |
4.646274106−1.811180603i |
L(21) |
≈ |
4.646274106−1.811180603i |
L(1) |
≈ |
2.453078929−0.5436000996i |
L(1) |
≈ |
2.453078929−0.5436000996i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+(0.997−0.0697i)T |
| 5 | 1+(0.559−0.829i)T |
| 7 | 1+(0.882−0.469i)T |
| 13 | 1+(0.241+0.970i)T |
| 17 | 1+(0.104+0.994i)T |
| 19 | 1+(0.978−0.207i)T |
| 23 | 1+(0.173−0.984i)T |
| 29 | 1+(−0.848−0.529i)T |
| 31 | 1+(−0.719+0.694i)T |
| 37 | 1+(−0.978−0.207i)T |
| 41 | 1+(−0.848+0.529i)T |
| 43 | 1+(0.939+0.342i)T |
| 47 | 1+(0.990+0.139i)T |
| 53 | 1+(−0.809−0.587i)T |
| 59 | 1+(−0.615−0.788i)T |
| 61 | 1+(0.719+0.694i)T |
| 67 | 1+(0.766+0.642i)T |
| 71 | 1+(−0.104−0.994i)T |
| 73 | 1+(−0.669+0.743i)T |
| 79 | 1+(0.997−0.0697i)T |
| 83 | 1+(0.241−0.970i)T |
| 89 | 1+(−0.5−0.866i)T |
| 97 | 1+(0.559+0.829i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−25.157282351021985665864104380223, −24.413649938851120595851039092130, −23.39478466386961357875288208224, −22.37361215454305125239585622557, −21.99947986772355882788363674738, −20.820204143540263542517077908329, −20.35928568074673327156787444917, −18.8584301691742781186085014471, −18.017562806844556333325539063515, −17.103623190086485059075437733857, −15.71757579592024892104229096005, −15.09809876391427026197055623794, −14.129608320932175207133374637837, −13.554070319397190005989497207082, −12.30483488478288458908822527349, −11.35055459639149450251443132771, −10.65368190459227464814000565464, −9.38319815102772298230901039148, −7.790321614211966168414268797774, −7.084973666263213494061372681620, −5.61501739373833162974817696836, −5.306773528892711464114152735676, −3.630106170947272262726667927599, −2.692126403146808938350565585914, −1.55034552754743456089875074629,
1.23298076641867537753808166435, 2.075455910265139440499324281939, 3.77139074537581108771968142758, 4.68159076778124277626175266437, 5.52672672370470229520813561863, 6.65193535455308064465586918043, 7.82451104157810815533082328827, 8.98033667149916227428490304052, 10.29550261650863093667305391231, 11.25035902924605132766184967764, 12.20058333970763871441935623219, 13.12808077931342507618889427292, 13.99780579337655771303048571885, 14.62606892755908764858805943211, 15.92179685633448216154718335176, 16.7433033137869667325299956455, 17.523822297945141961155205682525, 18.892259445189449308930623919071, 20.113370459733802900770824825503, 20.730635525597968973074939148374, 21.41326180643301045361780939281, 22.25831676782641771238472160811, 23.51202971790854922983643809419, 24.11455241906353337720337710517, 24.69087957693099140195806059880