Properties

Label 1-297-297.38-r1-0-0
Degree 11
Conductor 297297
Sign 0.8280.559i-0.828 - 0.559i
Analytic cond. 31.917031.9170
Root an. cond. 31.917031.9170
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.719 + 0.694i)2-s + (0.0348 + 0.999i)4-s + (0.241 + 0.970i)5-s + (−0.615 + 0.788i)7-s + (−0.669 + 0.743i)8-s + (−0.5 + 0.866i)10-s + (0.438 + 0.898i)13-s + (−0.990 + 0.139i)14-s + (−0.997 + 0.0697i)16-s + (−0.913 + 0.406i)17-s + (0.669 − 0.743i)19-s + (−0.961 + 0.275i)20-s + (0.939 − 0.342i)23-s + (−0.882 + 0.469i)25-s + (−0.309 + 0.951i)26-s + ⋯
L(s)  = 1  + (0.719 + 0.694i)2-s + (0.0348 + 0.999i)4-s + (0.241 + 0.970i)5-s + (−0.615 + 0.788i)7-s + (−0.669 + 0.743i)8-s + (−0.5 + 0.866i)10-s + (0.438 + 0.898i)13-s + (−0.990 + 0.139i)14-s + (−0.997 + 0.0697i)16-s + (−0.913 + 0.406i)17-s + (0.669 − 0.743i)19-s + (−0.961 + 0.275i)20-s + (0.939 − 0.342i)23-s + (−0.882 + 0.469i)25-s + (−0.309 + 0.951i)26-s + ⋯

Functional equation

Λ(s)=(297s/2ΓR(s+1)L(s)=((0.8280.559i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.828 - 0.559i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(297s/2ΓR(s+1)L(s)=((0.8280.559i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.828 - 0.559i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 297297    =    33113^{3} \cdot 11
Sign: 0.8280.559i-0.828 - 0.559i
Analytic conductor: 31.917031.9170
Root analytic conductor: 31.917031.9170
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ297(38,)\chi_{297} (38, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 297, (1: ), 0.8280.559i)(1,\ 297,\ (1:\ ),\ -0.828 - 0.559i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.5824998027+1.902608320i-0.5824998027 + 1.902608320i
L(12)L(\frac12) \approx 0.5824998027+1.902608320i-0.5824998027 + 1.902608320i
L(1)L(1) \approx 0.8701763317+1.065322507i0.8701763317 + 1.065322507i
L(1)L(1) \approx 0.8701763317+1.065322507i0.8701763317 + 1.065322507i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
11 1 1
good2 1+(0.719+0.694i)T 1 + (0.719 + 0.694i)T
5 1+(0.241+0.970i)T 1 + (0.241 + 0.970i)T
7 1+(0.615+0.788i)T 1 + (-0.615 + 0.788i)T
13 1+(0.438+0.898i)T 1 + (0.438 + 0.898i)T
17 1+(0.913+0.406i)T 1 + (-0.913 + 0.406i)T
19 1+(0.6690.743i)T 1 + (0.669 - 0.743i)T
23 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
29 1+(0.9900.139i)T 1 + (-0.990 - 0.139i)T
31 1+(0.5590.829i)T 1 + (0.559 - 0.829i)T
37 1+(0.669+0.743i)T 1 + (0.669 + 0.743i)T
41 1+(0.990+0.139i)T 1 + (-0.990 + 0.139i)T
43 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
47 1+(0.0348+0.999i)T 1 + (-0.0348 + 0.999i)T
53 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
59 1+(0.848+0.529i)T 1 + (-0.848 + 0.529i)T
61 1+(0.559+0.829i)T 1 + (0.559 + 0.829i)T
67 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
71 1+(0.913+0.406i)T 1 + (-0.913 + 0.406i)T
73 1+(0.978+0.207i)T 1 + (-0.978 + 0.207i)T
79 1+(0.7190.694i)T 1 + (-0.719 - 0.694i)T
83 1+(0.438+0.898i)T 1 + (-0.438 + 0.898i)T
89 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
97 1+(0.241+0.970i)T 1 + (-0.241 + 0.970i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−24.64192294447627230486768924209, −23.46473728537194894334270034275, −22.91245940536854825171838210869, −21.956586565322772731508923744505, −20.85483031471163731072010380916, −20.26527439115191267923195460858, −19.66054045388139425576179415452, −18.44435263567655048194095968299, −17.35954256929732151480990854280, −16.24170877118143737319290729788, −15.488479635789474730825176642277, −14.16557088177191885796375118615, −13.22749251271265077809087659485, −12.87616652356390665542448165814, −11.69412142067448681625449816377, −10.62947387677001763777454373998, −9.74893905237020779570397317231, −8.8188578699878670728829003451, −7.30075380308497265634868001963, −6.020499041490539598626169629775, −5.109210922540733955430175048618, −4.04009254360195226363702674303, −3.03199815880009193116693481439, −1.47436158564015122241487730113, −0.45707494260898525712209614722, 2.2826455010276898086543393087, 3.16383988754347964589908808688, 4.3635360554784234247599585889, 5.72344264240585557784291909810, 6.5029186756632909742728303988, 7.23184026034386235658844441074, 8.66053735892187350144708034165, 9.520275855780952232492774588304, 11.08045775815496206439680115886, 11.79809012484137327696417603175, 13.11552806728770416079642752066, 13.6808821743362563957419412559, 14.90949878729398404202356494462, 15.37550906909228041624056509498, 16.394495158657325340323404458868, 17.43574303823464683066522815785, 18.41131261315949493070937030359, 19.16743959889895336927120539482, 20.59351738976617447055830683046, 21.657448851267845127823073116249, 22.205194527920473097163368985203, 22.86558132211425692924991504807, 23.97323078334814308550739102703, 24.75544931231149480827355229756, 25.8716054352566296576287021311

Graph of the ZZ-function along the critical line