Properties

Label 1-297-297.59-r1-0-0
Degree 11
Conductor 297297
Sign 0.947+0.320i0.947 + 0.320i
Analytic cond. 31.917031.9170
Root an. cond. 31.917031.9170
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.990 + 0.139i)2-s + (0.961 − 0.275i)4-s + (0.374 + 0.927i)5-s + (0.559 − 0.829i)7-s + (−0.913 + 0.406i)8-s + (−0.5 − 0.866i)10-s + (−0.882 + 0.469i)13-s + (−0.438 + 0.898i)14-s + (0.848 − 0.529i)16-s + (0.978 − 0.207i)17-s + (0.913 − 0.406i)19-s + (0.615 + 0.788i)20-s + (0.939 + 0.342i)23-s + (−0.719 + 0.694i)25-s + (0.809 − 0.587i)26-s + ⋯
L(s)  = 1  + (−0.990 + 0.139i)2-s + (0.961 − 0.275i)4-s + (0.374 + 0.927i)5-s + (0.559 − 0.829i)7-s + (−0.913 + 0.406i)8-s + (−0.5 − 0.866i)10-s + (−0.882 + 0.469i)13-s + (−0.438 + 0.898i)14-s + (0.848 − 0.529i)16-s + (0.978 − 0.207i)17-s + (0.913 − 0.406i)19-s + (0.615 + 0.788i)20-s + (0.939 + 0.342i)23-s + (−0.719 + 0.694i)25-s + (0.809 − 0.587i)26-s + ⋯

Functional equation

Λ(s)=(297s/2ΓR(s+1)L(s)=((0.947+0.320i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.947 + 0.320i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(297s/2ΓR(s+1)L(s)=((0.947+0.320i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.947 + 0.320i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 297297    =    33113^{3} \cdot 11
Sign: 0.947+0.320i0.947 + 0.320i
Analytic conductor: 31.917031.9170
Root analytic conductor: 31.917031.9170
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ297(59,)\chi_{297} (59, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 297, (1: ), 0.947+0.320i)(1,\ 297,\ (1:\ ),\ 0.947 + 0.320i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.427747102+0.2350242334i1.427747102 + 0.2350242334i
L(12)L(\frac12) \approx 1.427747102+0.2350242334i1.427747102 + 0.2350242334i
L(1)L(1) \approx 0.8663790816+0.1003951290i0.8663790816 + 0.1003951290i
L(1)L(1) \approx 0.8663790816+0.1003951290i0.8663790816 + 0.1003951290i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
11 1 1
good2 1+(0.990+0.139i)T 1 + (-0.990 + 0.139i)T
5 1+(0.374+0.927i)T 1 + (0.374 + 0.927i)T
7 1+(0.5590.829i)T 1 + (0.559 - 0.829i)T
13 1+(0.882+0.469i)T 1 + (-0.882 + 0.469i)T
17 1+(0.9780.207i)T 1 + (0.978 - 0.207i)T
19 1+(0.9130.406i)T 1 + (0.913 - 0.406i)T
23 1+(0.939+0.342i)T 1 + (0.939 + 0.342i)T
29 1+(0.4380.898i)T 1 + (-0.438 - 0.898i)T
31 1+(0.03480.999i)T 1 + (0.0348 - 0.999i)T
37 1+(0.913+0.406i)T 1 + (0.913 + 0.406i)T
41 1+(0.438+0.898i)T 1 + (-0.438 + 0.898i)T
43 1+(0.766+0.642i)T 1 + (0.766 + 0.642i)T
47 1+(0.9610.275i)T 1 + (-0.961 - 0.275i)T
53 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
59 1+(0.2410.970i)T 1 + (0.241 - 0.970i)T
61 1+(0.0348+0.999i)T 1 + (0.0348 + 0.999i)T
67 1+(0.173+0.984i)T 1 + (0.173 + 0.984i)T
71 1+(0.9780.207i)T 1 + (0.978 - 0.207i)T
73 1+(0.1040.994i)T 1 + (-0.104 - 0.994i)T
79 1+(0.9900.139i)T 1 + (0.990 - 0.139i)T
83 1+(0.882+0.469i)T 1 + (0.882 + 0.469i)T
89 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
97 1+(0.374+0.927i)T 1 + (-0.374 + 0.927i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−24.95004482014078224833016754873, −24.74145313343757802391682510872, −23.6827765056190080014372952820, −22.125252530276809545559864475145, −21.24914349534620766261506036672, −20.58998800901287598426988052983, −19.70368034857437604925166572411, −18.67351205764415929341818570936, −17.8616651118933068016466810282, −17.03019185417777040028055261997, −16.26770950260955959998653758149, −15.23613262106528316989111749126, −14.25058223113465044733077136302, −12.52381884934266066896253037036, −12.26573687018402041468264019896, −10.9998516121390051360606120537, −9.861955863447414737971888762846, −9.09792747611711601313339545123, −8.22982843381031781545245562082, −7.327491784740044436448041671693, −5.78529046573240277703261547202, −5.03335301415157015603311963060, −3.15039093072990561823059669617, −1.9202271940817942592309001150, −0.86684974901412937950062052120, 0.86424259226114871191539004045, 2.17168733664419236670614214004, 3.32101107052146765946162558127, 5.04977700466073844733503392340, 6.34513142058193420137040964232, 7.34889943024451931106911185524, 7.84688422557679258374144003495, 9.54033752584710696760483199088, 9.94753227866798539981655740417, 11.16693592392809959890010793671, 11.661110349397004408805762390624, 13.37767911188879116956256305633, 14.4962961854211564074042998272, 15.00943129582731967754482105753, 16.40774019590358974411246938157, 17.16810460924600136411025485189, 17.90688280169292671568200058693, 18.8185125233558334412273993083, 19.56988333631610453009066689011, 20.65317709645867338684309715202, 21.39221835745471038620856964410, 22.587092561055180662659196522449, 23.61800594729866253984201896828, 24.51030196761804191646128761713, 25.39830006220394719527772102445

Graph of the ZZ-function along the critical line