L(s) = 1 | + (−0.990 + 0.139i)2-s + (0.961 − 0.275i)4-s + (0.374 + 0.927i)5-s + (0.559 − 0.829i)7-s + (−0.913 + 0.406i)8-s + (−0.5 − 0.866i)10-s + (−0.882 + 0.469i)13-s + (−0.438 + 0.898i)14-s + (0.848 − 0.529i)16-s + (0.978 − 0.207i)17-s + (0.913 − 0.406i)19-s + (0.615 + 0.788i)20-s + (0.939 + 0.342i)23-s + (−0.719 + 0.694i)25-s + (0.809 − 0.587i)26-s + ⋯ |
L(s) = 1 | + (−0.990 + 0.139i)2-s + (0.961 − 0.275i)4-s + (0.374 + 0.927i)5-s + (0.559 − 0.829i)7-s + (−0.913 + 0.406i)8-s + (−0.5 − 0.866i)10-s + (−0.882 + 0.469i)13-s + (−0.438 + 0.898i)14-s + (0.848 − 0.529i)16-s + (0.978 − 0.207i)17-s + (0.913 − 0.406i)19-s + (0.615 + 0.788i)20-s + (0.939 + 0.342i)23-s + (−0.719 + 0.694i)25-s + (0.809 − 0.587i)26-s + ⋯ |
Λ(s)=(=(297s/2ΓR(s+1)L(s)(0.947+0.320i)Λ(1−s)
Λ(s)=(=(297s/2ΓR(s+1)L(s)(0.947+0.320i)Λ(1−s)
Degree: |
1 |
Conductor: |
297
= 33⋅11
|
Sign: |
0.947+0.320i
|
Analytic conductor: |
31.9170 |
Root analytic conductor: |
31.9170 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ297(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 297, (1: ), 0.947+0.320i)
|
Particular Values
L(21) |
≈ |
1.427747102+0.2350242334i |
L(21) |
≈ |
1.427747102+0.2350242334i |
L(1) |
≈ |
0.8663790816+0.1003951290i |
L(1) |
≈ |
0.8663790816+0.1003951290i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+(−0.990+0.139i)T |
| 5 | 1+(0.374+0.927i)T |
| 7 | 1+(0.559−0.829i)T |
| 13 | 1+(−0.882+0.469i)T |
| 17 | 1+(0.978−0.207i)T |
| 19 | 1+(0.913−0.406i)T |
| 23 | 1+(0.939+0.342i)T |
| 29 | 1+(−0.438−0.898i)T |
| 31 | 1+(0.0348−0.999i)T |
| 37 | 1+(0.913+0.406i)T |
| 41 | 1+(−0.438+0.898i)T |
| 43 | 1+(0.766+0.642i)T |
| 47 | 1+(−0.961−0.275i)T |
| 53 | 1+(−0.309−0.951i)T |
| 59 | 1+(0.241−0.970i)T |
| 61 | 1+(0.0348+0.999i)T |
| 67 | 1+(0.173+0.984i)T |
| 71 | 1+(0.978−0.207i)T |
| 73 | 1+(−0.104−0.994i)T |
| 79 | 1+(0.990−0.139i)T |
| 83 | 1+(0.882+0.469i)T |
| 89 | 1+(0.5−0.866i)T |
| 97 | 1+(−0.374+0.927i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−24.95004482014078224833016754873, −24.74145313343757802391682510872, −23.6827765056190080014372952820, −22.125252530276809545559864475145, −21.24914349534620766261506036672, −20.58998800901287598426988052983, −19.70368034857437604925166572411, −18.67351205764415929341818570936, −17.8616651118933068016466810282, −17.03019185417777040028055261997, −16.26770950260955959998653758149, −15.23613262106528316989111749126, −14.25058223113465044733077136302, −12.52381884934266066896253037036, −12.26573687018402041468264019896, −10.9998516121390051360606120537, −9.861955863447414737971888762846, −9.09792747611711601313339545123, −8.22982843381031781545245562082, −7.327491784740044436448041671693, −5.78529046573240277703261547202, −5.03335301415157015603311963060, −3.15039093072990561823059669617, −1.9202271940817942592309001150, −0.86684974901412937950062052120,
0.86424259226114871191539004045, 2.17168733664419236670614214004, 3.32101107052146765946162558127, 5.04977700466073844733503392340, 6.34513142058193420137040964232, 7.34889943024451931106911185524, 7.84688422557679258374144003495, 9.54033752584710696760483199088, 9.94753227866798539981655740417, 11.16693592392809959890010793671, 11.661110349397004408805762390624, 13.37767911188879116956256305633, 14.4962961854211564074042998272, 15.00943129582731967754482105753, 16.40774019590358974411246938157, 17.16810460924600136411025485189, 17.90688280169292671568200058693, 18.8185125233558334412273993083, 19.56988333631610453009066689011, 20.65317709645867338684309715202, 21.39221835745471038620856964410, 22.587092561055180662659196522449, 23.61800594729866253984201896828, 24.51030196761804191646128761713, 25.39830006220394719527772102445