Properties

Label 1-2e9-512.125-r0-0-0
Degree 11
Conductor 512512
Sign 0.3020.953i-0.302 - 0.953i
Analytic cond. 2.377712.37771
Root an. cond. 2.377712.37771
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.427 − 0.903i)3-s + (0.989 + 0.146i)5-s + (−0.0980 − 0.995i)7-s + (−0.634 − 0.773i)9-s + (0.998 − 0.0490i)11-s + (−0.803 − 0.595i)13-s + (0.555 − 0.831i)15-s + (−0.555 − 0.831i)17-s + (−0.970 − 0.242i)19-s + (−0.941 − 0.336i)21-s + (−0.471 + 0.881i)23-s + (0.956 + 0.290i)25-s + (−0.970 + 0.242i)27-s + (0.740 − 0.671i)29-s + (0.382 + 0.923i)31-s + ⋯
L(s)  = 1  + (0.427 − 0.903i)3-s + (0.989 + 0.146i)5-s + (−0.0980 − 0.995i)7-s + (−0.634 − 0.773i)9-s + (0.998 − 0.0490i)11-s + (−0.803 − 0.595i)13-s + (0.555 − 0.831i)15-s + (−0.555 − 0.831i)17-s + (−0.970 − 0.242i)19-s + (−0.941 − 0.336i)21-s + (−0.471 + 0.881i)23-s + (0.956 + 0.290i)25-s + (−0.970 + 0.242i)27-s + (0.740 − 0.671i)29-s + (0.382 + 0.923i)31-s + ⋯

Functional equation

Λ(s)=(512s/2ΓR(s)L(s)=((0.3020.953i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 512 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.302 - 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(512s/2ΓR(s)L(s)=((0.3020.953i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 512 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.302 - 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 512512    =    292^{9}
Sign: 0.3020.953i-0.302 - 0.953i
Analytic conductor: 2.377712.37771
Root analytic conductor: 2.377712.37771
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ512(125,)\chi_{512} (125, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 512, (0: ), 0.3020.953i)(1,\ 512,\ (0:\ ),\ -0.302 - 0.953i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.0049716701.372569813i1.004971670 - 1.372569813i
L(12)L(\frac12) \approx 1.0049716701.372569813i1.004971670 - 1.372569813i
L(1)L(1) \approx 1.1744356270.6407913774i1.174435627 - 0.6407913774i
L(1)L(1) \approx 1.1744356270.6407913774i1.174435627 - 0.6407913774i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
good3 1+(0.4270.903i)T 1 + (0.427 - 0.903i)T
5 1+(0.989+0.146i)T 1 + (0.989 + 0.146i)T
7 1+(0.09800.995i)T 1 + (-0.0980 - 0.995i)T
11 1+(0.9980.0490i)T 1 + (0.998 - 0.0490i)T
13 1+(0.8030.595i)T 1 + (-0.803 - 0.595i)T
17 1+(0.5550.831i)T 1 + (-0.555 - 0.831i)T
19 1+(0.9700.242i)T 1 + (-0.970 - 0.242i)T
23 1+(0.471+0.881i)T 1 + (-0.471 + 0.881i)T
29 1+(0.7400.671i)T 1 + (0.740 - 0.671i)T
31 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
37 1+(0.8570.514i)T 1 + (-0.857 - 0.514i)T
41 1+(0.9560.290i)T 1 + (0.956 - 0.290i)T
43 1+(0.903+0.427i)T 1 + (-0.903 + 0.427i)T
47 1+(0.980+0.195i)T 1 + (0.980 + 0.195i)T
53 1+(0.740+0.671i)T 1 + (0.740 + 0.671i)T
59 1+(0.8030.595i)T 1 + (0.803 - 0.595i)T
61 1+(0.9410.336i)T 1 + (0.941 - 0.336i)T
67 1+(0.3360.941i)T 1 + (-0.336 - 0.941i)T
71 1+(0.773+0.634i)T 1 + (0.773 + 0.634i)T
73 1+(0.0980+0.995i)T 1 + (-0.0980 + 0.995i)T
79 1+(0.195+0.980i)T 1 + (0.195 + 0.980i)T
83 1+(0.857+0.514i)T 1 + (-0.857 + 0.514i)T
89 1+(0.4710.881i)T 1 + (-0.471 - 0.881i)T
97 1+(0.923+0.382i)T 1 + (-0.923 + 0.382i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−24.107540613496022834928757610552, −22.49764382959435232683655324042, −22.00239265273452632433976585708, −21.4724827889337374198251207475, −20.65945655064078326097749521951, −19.62159070131330197409183674028, −18.9721444676795774852916997194, −17.71481001927232259889314122356, −16.95035256467872780192576894848, −16.27516863192200375295769680632, −14.994695910933014606453216174839, −14.65898482886790870637038035814, −13.70989203395122211169645123127, −12.60278159048517137425179290644, −11.72850082599226708126557707497, −10.482833384733538271622140181945, −9.80499188504763249182269879163, −8.87270680616835784431337275780, −8.50478843649648898863403153896, −6.68377672082373113725711487017, −5.91657682619228304523038206790, −4.84164221603122405418926213504, −3.98767405409493199425530866759, −2.54109731253532145269442654813, −1.9310108169926703448197947861, 0.85512621008299191386762486486, 1.989827704646080875748923653220, 2.94747948997248697506228377993, 4.199316188680660672854245671325, 5.5506895267882805545229167512, 6.69641820311182170364001741373, 7.07124446228437158856521442441, 8.29692666024639884533470932804, 9.31115222679207138246756592892, 10.07758379684350422030597810347, 11.18521549869772103692028985591, 12.28719856041952176274116113246, 13.11962036815663320879185831005, 13.991809852604931210704435224575, 14.277818509465705533935258904228, 15.51611725780296323315318785328, 16.98526276487896643677542729162, 17.42786560952100421589582343450, 18.05692590752419400743388321947, 19.38126012005734775803032632166, 19.756418604610038513161087829995, 20.6685696735116203106538544877, 21.6454742395536681132033637194, 22.61772489825173202219255643249, 23.3272725069369910272538102596

Graph of the ZZ-function along the critical line