L(s) = 1 | + (0.803 − 0.595i)3-s + (0.740 − 0.671i)5-s + (−0.471 + 0.881i)7-s + (0.290 − 0.956i)9-s + (0.970 + 0.242i)11-s + (0.998 − 0.0490i)13-s + (0.195 − 0.980i)15-s + (−0.195 − 0.980i)17-s + (−0.336 + 0.941i)19-s + (0.146 + 0.989i)21-s + (−0.634 + 0.773i)23-s + (0.0980 − 0.995i)25-s + (−0.336 − 0.941i)27-s + (−0.857 − 0.514i)29-s + (0.923 + 0.382i)31-s + ⋯ |
L(s) = 1 | + (0.803 − 0.595i)3-s + (0.740 − 0.671i)5-s + (−0.471 + 0.881i)7-s + (0.290 − 0.956i)9-s + (0.970 + 0.242i)11-s + (0.998 − 0.0490i)13-s + (0.195 − 0.980i)15-s + (−0.195 − 0.980i)17-s + (−0.336 + 0.941i)19-s + (0.146 + 0.989i)21-s + (−0.634 + 0.773i)23-s + (0.0980 − 0.995i)25-s + (−0.336 − 0.941i)27-s + (−0.857 − 0.514i)29-s + (0.923 + 0.382i)31-s + ⋯ |
Λ(s)=(=(512s/2ΓR(s)L(s)(0.715−0.698i)Λ(1−s)
Λ(s)=(=(512s/2ΓR(s)L(s)(0.715−0.698i)Λ(1−s)
Degree: |
1 |
Conductor: |
512
= 29
|
Sign: |
0.715−0.698i
|
Analytic conductor: |
2.37771 |
Root analytic conductor: |
2.37771 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ512(325,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 512, (0: ), 0.715−0.698i)
|
Particular Values
L(21) |
≈ |
1.952031111−0.7945606306i |
L(21) |
≈ |
1.952031111−0.7945606306i |
L(1) |
≈ |
1.520638985−0.3769512766i |
L(1) |
≈ |
1.520638985−0.3769512766i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1+(0.803−0.595i)T |
| 5 | 1+(0.740−0.671i)T |
| 7 | 1+(−0.471+0.881i)T |
| 11 | 1+(0.970+0.242i)T |
| 13 | 1+(0.998−0.0490i)T |
| 17 | 1+(−0.195−0.980i)T |
| 19 | 1+(−0.336+0.941i)T |
| 23 | 1+(−0.634+0.773i)T |
| 29 | 1+(−0.857−0.514i)T |
| 31 | 1+(0.923+0.382i)T |
| 37 | 1+(0.903+0.427i)T |
| 41 | 1+(0.0980+0.995i)T |
| 43 | 1+(0.595−0.803i)T |
| 47 | 1+(0.555−0.831i)T |
| 53 | 1+(−0.857+0.514i)T |
| 59 | 1+(−0.998−0.0490i)T |
| 61 | 1+(−0.146+0.989i)T |
| 67 | 1+(−0.989−0.146i)T |
| 71 | 1+(−0.956+0.290i)T |
| 73 | 1+(−0.471−0.881i)T |
| 79 | 1+(0.831−0.555i)T |
| 83 | 1+(0.903−0.427i)T |
| 89 | 1+(−0.634−0.773i)T |
| 97 | 1+(0.382−0.923i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.710894488675774570722624609244, −22.49389961290255045198718931810, −22.077105976399361850472812886044, −21.137387421160799684965127336525, −20.36367920987201069115897037914, −19.50000548400737722632400643365, −18.86659551649904433075815610021, −17.64595256129727040522727982587, −16.855871140243039820048954780620, −15.992923382965814505790816337, −14.97554107512792752543384030623, −14.20930918948399662794117643138, −13.59483170808698545154740043871, −12.81575588702527007132782312818, −11.01675081913047942286305037345, −10.6804765573049366947889978822, −9.60220325844854569284511363833, −8.968871882662774147304718406945, −7.84391209418079589821920856909, −6.671283589126808655620955788936, −6.01806834152786528194285766686, −4.35048596379107347157051456292, −3.70072151433654722343733063833, −2.67642742786918101917185417992, −1.46987439019017598702920268189,
1.2520942139772787537531068619, 2.09813837963228003000494541019, 3.22779915796836636575614619514, 4.359018292145722649081301618489, 5.90113863749781679793902566641, 6.31570265571217896612673272417, 7.66314571071652933108852776373, 8.72294787063540716765890027008, 9.231601651061124164617223081008, 9.98930374631863561870948851231, 11.71558224018077010432451206406, 12.29637488442720004873869634633, 13.306397887647039251430384828428, 13.80956536146090803775389120687, 14.82768402637411303572319277015, 15.74798172562540260517517380440, 16.66818344226364484411952245290, 17.764857806720726613750101906493, 18.4309994835945472216012202211, 19.24200158420523177610875836732, 20.19570681781799109767000437597, 20.805540971692946044279078094301, 21.6674760293497858304525119007, 22.62317040208497718858316056868, 23.62707692095969159257825009543