L(s) = 1 | + (0.989 − 0.146i)3-s + (−0.0490 − 0.998i)5-s + (0.881 − 0.471i)7-s + (0.956 − 0.290i)9-s + (0.857 + 0.514i)11-s + (−0.740 + 0.671i)13-s + (−0.195 − 0.980i)15-s + (0.195 − 0.980i)17-s + (0.903 + 0.427i)19-s + (0.803 − 0.595i)21-s + (−0.773 + 0.634i)23-s + (−0.995 + 0.0980i)25-s + (0.903 − 0.427i)27-s + (−0.242 + 0.970i)29-s + (0.923 − 0.382i)31-s + ⋯ |
L(s) = 1 | + (0.989 − 0.146i)3-s + (−0.0490 − 0.998i)5-s + (0.881 − 0.471i)7-s + (0.956 − 0.290i)9-s + (0.857 + 0.514i)11-s + (−0.740 + 0.671i)13-s + (−0.195 − 0.980i)15-s + (0.195 − 0.980i)17-s + (0.903 + 0.427i)19-s + (0.803 − 0.595i)21-s + (−0.773 + 0.634i)23-s + (−0.995 + 0.0980i)25-s + (0.903 − 0.427i)27-s + (−0.242 + 0.970i)29-s + (0.923 − 0.382i)31-s + ⋯ |
Λ(s)=(=(512s/2ΓR(s)L(s)(0.698−0.715i)Λ(1−s)
Λ(s)=(=(512s/2ΓR(s)L(s)(0.698−0.715i)Λ(1−s)
Degree: |
1 |
Conductor: |
512
= 29
|
Sign: |
0.698−0.715i
|
Analytic conductor: |
2.37771 |
Root analytic conductor: |
2.37771 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ512(333,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 512, (0: ), 0.698−0.715i)
|
Particular Values
L(21) |
≈ |
2.022453139−0.8523035194i |
L(21) |
≈ |
2.022453139−0.8523035194i |
L(1) |
≈ |
1.576501817−0.3764925100i |
L(1) |
≈ |
1.576501817−0.3764925100i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1+(0.989−0.146i)T |
| 5 | 1+(−0.0490−0.998i)T |
| 7 | 1+(0.881−0.471i)T |
| 11 | 1+(0.857+0.514i)T |
| 13 | 1+(−0.740+0.671i)T |
| 17 | 1+(0.195−0.980i)T |
| 19 | 1+(0.903+0.427i)T |
| 23 | 1+(−0.773+0.634i)T |
| 29 | 1+(−0.242+0.970i)T |
| 31 | 1+(0.923−0.382i)T |
| 37 | 1+(−0.941−0.336i)T |
| 41 | 1+(−0.995−0.0980i)T |
| 43 | 1+(−0.146+0.989i)T |
| 47 | 1+(−0.555−0.831i)T |
| 53 | 1+(−0.242−0.970i)T |
| 59 | 1+(0.740+0.671i)T |
| 61 | 1+(−0.803−0.595i)T |
| 67 | 1+(−0.595+0.803i)T |
| 71 | 1+(0.290−0.956i)T |
| 73 | 1+(0.881+0.471i)T |
| 79 | 1+(−0.831−0.555i)T |
| 83 | 1+(−0.941+0.336i)T |
| 89 | 1+(−0.773−0.634i)T |
| 97 | 1+(0.382+0.923i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−24.023213628327943814522402961127, −22.51496225687797513023050975246, −21.99135063347003286510923058945, −21.24327275916148965993606576358, −20.25269071590676511802292505126, −19.429071800018639139413676494774, −18.78495012074776958121681960829, −17.8912855488191879635882447044, −17.03087045888736954964473691496, −15.53294758891110098352702661129, −15.13975006615696371420471665374, −14.20991739660068177796589746891, −13.835463939390175626998694794370, −12.388436453071310483473156794202, −11.54558308516554091255051327225, −10.469038526466960758864578893052, −9.74779228917959450718580623847, −8.55250901481680085644252196191, −7.939654778427175459217656973194, −6.967430037328005153038903413910, −5.84148850975083564527031169427, −4.54810887543381053334338058961, −3.47920371736253739074087333857, −2.6311715743682989484108175447, −1.59985902077914957826334679646,
1.2730232976731595924345294049, 1.95369902366472752584108303353, 3.51335597293070673672202403755, 4.44846688526493202765149911213, 5.18329387229340117698339813260, 6.90894884645403451195785737358, 7.62597422183657819264831973329, 8.48394451226662007909061609063, 9.420834979349082347363155422973, 9.968894838420983011991381594310, 11.72410210128083388189233229103, 12.08222140467123598767496452353, 13.35260646942411395707884956090, 14.08423152524271310449765676280, 14.6569717825500291811931732890, 15.802807634882468440066917086313, 16.65177489525246687499258409961, 17.54826072852409836174418300136, 18.41144782007684510368649325392, 19.63838066819613945730544482901, 20.06418057502147827654410009411, 20.80367691916308464646257596963, 21.48122198834723472215291646167, 22.655942310462025698213237567907, 23.84857699779634769907576092837