L(s) = 1 | + (0.989 − 0.146i)3-s + (−0.0490 − 0.998i)5-s + (0.881 − 0.471i)7-s + (0.956 − 0.290i)9-s + (0.857 + 0.514i)11-s + (−0.740 + 0.671i)13-s + (−0.195 − 0.980i)15-s + (0.195 − 0.980i)17-s + (0.903 + 0.427i)19-s + (0.803 − 0.595i)21-s + (−0.773 + 0.634i)23-s + (−0.995 + 0.0980i)25-s + (0.903 − 0.427i)27-s + (−0.242 + 0.970i)29-s + (0.923 − 0.382i)31-s + ⋯ |
L(s) = 1 | + (0.989 − 0.146i)3-s + (−0.0490 − 0.998i)5-s + (0.881 − 0.471i)7-s + (0.956 − 0.290i)9-s + (0.857 + 0.514i)11-s + (−0.740 + 0.671i)13-s + (−0.195 − 0.980i)15-s + (0.195 − 0.980i)17-s + (0.903 + 0.427i)19-s + (0.803 − 0.595i)21-s + (−0.773 + 0.634i)23-s + (−0.995 + 0.0980i)25-s + (0.903 − 0.427i)27-s + (−0.242 + 0.970i)29-s + (0.923 − 0.382i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 512 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.698 - 0.715i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 512 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.698 - 0.715i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.022453139 - 0.8523035194i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.022453139 - 0.8523035194i\) |
\(L(1)\) |
\(\approx\) |
\(1.576501817 - 0.3764925100i\) |
\(L(1)\) |
\(\approx\) |
\(1.576501817 - 0.3764925100i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 + (0.989 - 0.146i)T \) |
| 5 | \( 1 + (-0.0490 - 0.998i)T \) |
| 7 | \( 1 + (0.881 - 0.471i)T \) |
| 11 | \( 1 + (0.857 + 0.514i)T \) |
| 13 | \( 1 + (-0.740 + 0.671i)T \) |
| 17 | \( 1 + (0.195 - 0.980i)T \) |
| 19 | \( 1 + (0.903 + 0.427i)T \) |
| 23 | \( 1 + (-0.773 + 0.634i)T \) |
| 29 | \( 1 + (-0.242 + 0.970i)T \) |
| 31 | \( 1 + (0.923 - 0.382i)T \) |
| 37 | \( 1 + (-0.941 - 0.336i)T \) |
| 41 | \( 1 + (-0.995 - 0.0980i)T \) |
| 43 | \( 1 + (-0.146 + 0.989i)T \) |
| 47 | \( 1 + (-0.555 - 0.831i)T \) |
| 53 | \( 1 + (-0.242 - 0.970i)T \) |
| 59 | \( 1 + (0.740 + 0.671i)T \) |
| 61 | \( 1 + (-0.803 - 0.595i)T \) |
| 67 | \( 1 + (-0.595 + 0.803i)T \) |
| 71 | \( 1 + (0.290 - 0.956i)T \) |
| 73 | \( 1 + (0.881 + 0.471i)T \) |
| 79 | \( 1 + (-0.831 - 0.555i)T \) |
| 83 | \( 1 + (-0.941 + 0.336i)T \) |
| 89 | \( 1 + (-0.773 - 0.634i)T \) |
| 97 | \( 1 + (0.382 + 0.923i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.023213628327943814522402961127, −22.51496225687797513023050975246, −21.99135063347003286510923058945, −21.24327275916148965993606576358, −20.25269071590676511802292505126, −19.429071800018639139413676494774, −18.78495012074776958121681960829, −17.8912855488191879635882447044, −17.03087045888736954964473691496, −15.53294758891110098352702661129, −15.13975006615696371420471665374, −14.20991739660068177796589746891, −13.835463939390175626998694794370, −12.388436453071310483473156794202, −11.54558308516554091255051327225, −10.469038526466960758864578893052, −9.74779228917959450718580623847, −8.55250901481680085644252196191, −7.939654778427175459217656973194, −6.967430037328005153038903413910, −5.84148850975083564527031169427, −4.54810887543381053334338058961, −3.47920371736253739074087333857, −2.6311715743682989484108175447, −1.59985902077914957826334679646,
1.2730232976731595924345294049, 1.95369902366472752584108303353, 3.51335597293070673672202403755, 4.44846688526493202765149911213, 5.18329387229340117698339813260, 6.90894884645403451195785737358, 7.62597422183657819264831973329, 8.48394451226662007909061609063, 9.420834979349082347363155422973, 9.968894838420983011991381594310, 11.72410210128083388189233229103, 12.08222140467123598767496452353, 13.35260646942411395707884956090, 14.08423152524271310449765676280, 14.6569717825500291811931732890, 15.802807634882468440066917086313, 16.65177489525246687499258409961, 17.54826072852409836174418300136, 18.41144782007684510368649325392, 19.63838066819613945730544482901, 20.06418057502147827654410009411, 20.80367691916308464646257596963, 21.48122198834723472215291646167, 22.655942310462025698213237567907, 23.84857699779634769907576092837