L(s) = 1 | + (−0.984 − 0.173i)5-s + (0.984 − 0.173i)11-s + (−0.342 − 0.939i)13-s + (0.5 − 0.866i)17-s + (−0.866 + 0.5i)19-s + (0.766 + 0.642i)23-s + (0.939 + 0.342i)25-s + (−0.342 + 0.939i)29-s + (0.766 + 0.642i)31-s + (−0.866 − 0.5i)37-s + (−0.939 + 0.342i)41-s + (0.984 − 0.173i)43-s + (0.766 − 0.642i)47-s + i·53-s − 55-s + ⋯ |
L(s) = 1 | + (−0.984 − 0.173i)5-s + (0.984 − 0.173i)11-s + (−0.342 − 0.939i)13-s + (0.5 − 0.866i)17-s + (−0.866 + 0.5i)19-s + (0.766 + 0.642i)23-s + (0.939 + 0.342i)25-s + (−0.342 + 0.939i)29-s + (0.766 + 0.642i)31-s + (−0.866 − 0.5i)37-s + (−0.939 + 0.342i)41-s + (0.984 − 0.173i)43-s + (0.766 − 0.642i)47-s + i·53-s − 55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.900 - 0.435i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.900 - 0.435i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.318078073 - 0.3022837302i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.318078073 - 0.3022837302i\) |
\(L(1)\) |
\(\approx\) |
\(0.9513327573 - 0.08233120125i\) |
\(L(1)\) |
\(\approx\) |
\(0.9513327573 - 0.08233120125i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-0.984 - 0.173i)T \) |
| 11 | \( 1 + (0.984 - 0.173i)T \) |
| 13 | \( 1 + (-0.342 - 0.939i)T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + (0.766 + 0.642i)T \) |
| 29 | \( 1 + (-0.342 + 0.939i)T \) |
| 31 | \( 1 + (0.766 + 0.642i)T \) |
| 37 | \( 1 + (-0.866 - 0.5i)T \) |
| 41 | \( 1 + (-0.939 + 0.342i)T \) |
| 43 | \( 1 + (0.984 - 0.173i)T \) |
| 47 | \( 1 + (0.766 - 0.642i)T \) |
| 53 | \( 1 + iT \) |
| 59 | \( 1 + (0.984 + 0.173i)T \) |
| 61 | \( 1 + (0.642 + 0.766i)T \) |
| 67 | \( 1 + (-0.342 - 0.939i)T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 + (-0.5 - 0.866i)T \) |
| 79 | \( 1 + (0.939 + 0.342i)T \) |
| 83 | \( 1 + (-0.342 + 0.939i)T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + (-0.173 - 0.984i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.12981661833877468506208060831, −18.819660106634219791525365441014, −17.38248052972057831672002261852, −17.13862039819483612394316074454, −16.34633000880424972870231781039, −15.524661160836006637353259765054, −14.820569651363612828999073025849, −14.47618657784937880421499778679, −13.469507550171569301403043507135, −12.61270257221098249793542144802, −11.9588170933493316799485505030, −11.44324449880788457584030821355, −10.67647644460838204792349552495, −9.85574041926454366187261165660, −8.94486408843959678325803415514, −8.41681598790132908845957223944, −7.546202094917078077728606326292, −6.74219180884134360573221006943, −6.32202561570429431387008162013, −5.06022667570101083303102036875, −4.183052036476865637851621017726, −3.87651654204296224089754173937, −2.74798985970080983054773630454, −1.84657177193531936335232186832, −0.72980542695672790888309687648,
0.642277461171376336894371548881, 1.504092522224184406711974743196, 2.84909238114231472592845404405, 3.466781539119555123425228974185, 4.23936497540419023256516025520, 5.09998126246233432763890193000, 5.80317457877550338195643457348, 7.02671115488570550510430460520, 7.28080041106570671152296637843, 8.364452977259115073980741060815, 8.800300767827928847046624015456, 9.715328667386820800942421543133, 10.59958983660086994309975202497, 11.21350379089369930067960109693, 12.20024473729115847666155674913, 12.29894026108710659883395575772, 13.36284375794293278355415066735, 14.20080107064992445665256461770, 14.90519190551968119740385179550, 15.43361044601436781893119928003, 16.25074584063576714247042678418, 16.85712758313786151328192933308, 17.511215650509949853007217100723, 18.39316849108660148338885489989, 19.227438733295525525133626551007