L(s) = 1 | + (0.984 + 0.173i)5-s + (0.984 − 0.173i)11-s + (0.984 + 0.173i)13-s + (−0.5 − 0.866i)17-s + (−0.866 − 0.5i)19-s + (0.766 + 0.642i)23-s + (0.939 + 0.342i)25-s + (−0.984 + 0.173i)29-s + (−0.173 + 0.984i)31-s + i·37-s + (−0.173 + 0.984i)41-s + (0.642 + 0.766i)43-s + (0.173 + 0.984i)47-s + (0.866 + 0.5i)53-s + 55-s + ⋯ |
L(s) = 1 | + (0.984 + 0.173i)5-s + (0.984 − 0.173i)11-s + (0.984 + 0.173i)13-s + (−0.5 − 0.866i)17-s + (−0.866 − 0.5i)19-s + (0.766 + 0.642i)23-s + (0.939 + 0.342i)25-s + (−0.984 + 0.173i)29-s + (−0.173 + 0.984i)31-s + i·37-s + (−0.173 + 0.984i)41-s + (0.642 + 0.766i)43-s + (0.173 + 0.984i)47-s + (0.866 + 0.5i)53-s + 55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.891 + 0.452i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.891 + 0.452i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.287152381 + 0.5470791094i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.287152381 + 0.5470791094i\) |
\(L(1)\) |
\(\approx\) |
\(1.396681530 + 0.1078954584i\) |
\(L(1)\) |
\(\approx\) |
\(1.396681530 + 0.1078954584i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.984 + 0.173i)T \) |
| 11 | \( 1 + (0.984 - 0.173i)T \) |
| 13 | \( 1 + (0.984 + 0.173i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.866 - 0.5i)T \) |
| 23 | \( 1 + (0.766 + 0.642i)T \) |
| 29 | \( 1 + (-0.984 + 0.173i)T \) |
| 31 | \( 1 + (-0.173 + 0.984i)T \) |
| 37 | \( 1 + iT \) |
| 41 | \( 1 + (-0.173 + 0.984i)T \) |
| 43 | \( 1 + (0.642 + 0.766i)T \) |
| 47 | \( 1 + (0.173 + 0.984i)T \) |
| 53 | \( 1 + (0.866 + 0.5i)T \) |
| 59 | \( 1 + (-0.342 - 0.939i)T \) |
| 61 | \( 1 + (-0.984 + 0.173i)T \) |
| 67 | \( 1 + (0.642 - 0.766i)T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + (0.766 - 0.642i)T \) |
| 83 | \( 1 + (0.984 - 0.173i)T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 + (-0.766 + 0.642i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.93954885102084379832207231706, −18.27272224121282922443746906562, −17.52495817099018648072887515374, −16.86238684774544697543809043401, −16.55069225413032000503631287258, −15.27732951592373353092303464172, −14.87494509959233443826488626840, −14.02286865124474484111806581940, −13.35879863318797388206246841423, −12.76177787886627923481780753104, −12.07357804072487385799419581592, −10.908656619059439650677653067599, −10.65702240016272427715637742855, −9.64984360839381615695218629699, −8.8921732805488475200878993430, −8.56049876703814539091427649081, −7.36642651951080990690755103159, −6.47858318275967653231648544693, −6.01776718445007829472669531266, −5.27940868575455216399657947978, −4.10096008435047745108368984259, −3.71929111835075569861044266501, −2.29603163560065537976554313653, −1.829230351630851318255056345399, −0.7999588994807226598001457573,
1.075912314543581209271720020942, 1.71648667277341253091244565915, 2.7509446856239841781625807190, 3.49178245959835969004193348122, 4.51356802673953276924882085605, 5.24027054080292089687720684997, 6.28707667860934957516531897725, 6.53292973530403468212641862306, 7.45209834477226382250488569759, 8.60421540841056161504690845799, 9.18460516631528194031924328645, 9.608933061931681779245147053161, 10.8417658753101877093205879118, 11.06738215878790050850355154006, 11.99973734207326226143289062667, 13.02062581882463238157777469720, 13.45270078338185863463340537440, 14.14259896828202598358540438692, 14.81076880859707257154698188221, 15.59096340092373082725380749608, 16.45217856940925384593798882094, 17.06976153308809477980788886765, 17.676078039873588961758358251149, 18.37819630031475892276925140803, 18.98836559955637723594881470602