L(s) = 1 | + (0.342 − 0.939i)5-s + (−0.342 − 0.939i)11-s + (−0.342 + 0.939i)13-s + (−0.5 + 0.866i)17-s + (−0.866 + 0.5i)19-s + (−0.173 − 0.984i)23-s + (−0.766 − 0.642i)25-s + (0.342 + 0.939i)29-s + (−0.939 − 0.342i)31-s + i·37-s + (0.939 + 0.342i)41-s + (0.984 + 0.173i)43-s + (−0.939 + 0.342i)47-s + (0.866 − 0.5i)53-s − 55-s + ⋯ |
L(s) = 1 | + (0.342 − 0.939i)5-s + (−0.342 − 0.939i)11-s + (−0.342 + 0.939i)13-s + (−0.5 + 0.866i)17-s + (−0.866 + 0.5i)19-s + (−0.173 − 0.984i)23-s + (−0.766 − 0.642i)25-s + (0.342 + 0.939i)29-s + (−0.939 − 0.342i)31-s + i·37-s + (0.939 + 0.342i)41-s + (0.984 + 0.173i)43-s + (−0.939 + 0.342i)47-s + (0.866 − 0.5i)53-s − 55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.796 + 0.604i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.796 + 0.604i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.184866561 + 0.3987769976i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.184866561 + 0.3987769976i\) |
\(L(1)\) |
\(\approx\) |
\(0.9880584181 - 0.05702099403i\) |
\(L(1)\) |
\(\approx\) |
\(0.9880584181 - 0.05702099403i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.342 - 0.939i)T \) |
| 11 | \( 1 + (-0.342 - 0.939i)T \) |
| 13 | \( 1 + (-0.342 + 0.939i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + (-0.173 - 0.984i)T \) |
| 29 | \( 1 + (0.342 + 0.939i)T \) |
| 31 | \( 1 + (-0.939 - 0.342i)T \) |
| 37 | \( 1 + iT \) |
| 41 | \( 1 + (0.939 + 0.342i)T \) |
| 43 | \( 1 + (0.984 + 0.173i)T \) |
| 47 | \( 1 + (-0.939 + 0.342i)T \) |
| 53 | \( 1 + (0.866 - 0.5i)T \) |
| 59 | \( 1 + (0.642 + 0.766i)T \) |
| 61 | \( 1 + (0.342 + 0.939i)T \) |
| 67 | \( 1 + (0.984 - 0.173i)T \) |
| 71 | \( 1 + (0.5 + 0.866i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (0.173 - 0.984i)T \) |
| 83 | \( 1 + (0.342 + 0.939i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.173 - 0.984i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.96866253120617706071597630095, −18.07394519993462864983597193990, −17.67751757510365773624703813279, −17.22112702169478296691444572649, −15.90127881548873177944751482546, −15.511258871413311550788319773394, −14.76506103556012234088183431045, −14.193270406541239264634723284879, −13.275232058946128979199857691225, −12.79224676468601094223688086247, −11.86212737966181394599159736100, −11.03466007271096597154674594312, −10.514262876220155795686471168829, −9.71503830402242275512942559256, −9.19913322372488764525552210235, −8.010312728174951432290295909800, −7.34360027808891653803503342473, −6.83145238842389523345724365962, −5.85474310560983043879542328141, −5.192758305393797420483585443099, −4.26427428067344351586335266750, −3.35069279444642189529456463569, −2.41413174739883470018423339557, −2.03473734295902877592661921979, −0.43253649722067137559991100856,
0.89808311479884953172713454855, 1.85577741595268862470168481875, 2.58148759115334920627040075485, 3.8454578443604296850075083110, 4.40872540322446481013431283961, 5.2619697211957496540560930274, 6.07242211713473944181779234211, 6.63109768967811034581221901649, 7.778764188068008184204624652685, 8.60892740741000897493414756958, 8.8546942923151504151913406402, 9.86130016804794420338379102878, 10.594011631179747446381431386912, 11.322986619373523808225430931, 12.18929240882320167140628189120, 12.879484923057616198054472890963, 13.316675806568239751437439531305, 14.31765781486578732044496237471, 14.72449363341407921416180722872, 15.87443448282366736820212584488, 16.48102106723208400823229255758, 16.8173049374355343186827095807, 17.67691562714712814116825967093, 18.42937980214772672430566334382, 19.23136324733709197747694434661