L(s) = 1 | + (−0.258 − 0.965i)3-s − 7-s + (−0.866 + 0.5i)9-s + (−0.707 + 0.707i)11-s + (−0.965 − 0.258i)13-s + (−0.866 − 0.5i)17-s + (0.258 + 0.965i)21-s + (0.5 + 0.866i)23-s + (0.707 + 0.707i)27-s + (−0.258 + 0.965i)29-s − 31-s + (0.866 + 0.5i)33-s + (0.707 + 0.707i)37-s − i·39-s + (0.866 + 0.5i)41-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.965i)3-s − 7-s + (−0.866 + 0.5i)9-s + (−0.707 + 0.707i)11-s + (−0.965 − 0.258i)13-s + (−0.866 − 0.5i)17-s + (0.258 + 0.965i)21-s + (0.5 + 0.866i)23-s + (0.707 + 0.707i)27-s + (−0.258 + 0.965i)29-s − 31-s + (0.866 + 0.5i)33-s + (0.707 + 0.707i)37-s − i·39-s + (0.866 + 0.5i)41-s + ⋯ |
Λ(s)=(=(3040s/2ΓR(s)L(s)(−0.0623−0.998i)Λ(1−s)
Λ(s)=(=(3040s/2ΓR(s)L(s)(−0.0623−0.998i)Λ(1−s)
Degree: |
1 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
−0.0623−0.998i
|
Analytic conductor: |
14.1177 |
Root analytic conductor: |
14.1177 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(1133,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3040, (0: ), −0.0623−0.998i)
|
Particular Values
L(21) |
≈ |
0.3887617283−0.4138175805i |
L(21) |
≈ |
0.3887617283−0.4138175805i |
L(1) |
≈ |
0.6455101581−0.1641955029i |
L(1) |
≈ |
0.6455101581−0.1641955029i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(−0.258−0.965i)T |
| 7 | 1−T |
| 11 | 1+(−0.707+0.707i)T |
| 13 | 1+(−0.965−0.258i)T |
| 17 | 1+(−0.866−0.5i)T |
| 23 | 1+(0.5+0.866i)T |
| 29 | 1+(−0.258+0.965i)T |
| 31 | 1−T |
| 37 | 1+(0.707+0.707i)T |
| 41 | 1+(0.866+0.5i)T |
| 43 | 1+(0.965−0.258i)T |
| 47 | 1+(0.866−0.5i)T |
| 53 | 1+(0.258−0.965i)T |
| 59 | 1+(0.258+0.965i)T |
| 61 | 1+(−0.258+0.965i)T |
| 67 | 1+(−0.965−0.258i)T |
| 71 | 1+(−0.866−0.5i)T |
| 73 | 1+(0.5−0.866i)T |
| 79 | 1+(0.5−0.866i)T |
| 83 | 1+(−0.707+0.707i)T |
| 89 | 1+(−0.866+0.5i)T |
| 97 | 1+(−0.866−0.5i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.2300731451841349477637435044, −18.66526276262458352863825165722, −17.59232456557549975005991702824, −17.03447651080103768690899877849, −16.31059510197884284465814371346, −15.86564677172936277350292311934, −15.1474329631082714594730008590, −14.46303222872366562624563574762, −13.63905696825716313034849863680, −12.75891436025802654915843077857, −12.29415557364367197896335076674, −11.04426865581638006290305496170, −10.87254441014262894618058772189, −9.9250782196608043493595527749, −9.31709875216364385332514311175, −8.75144116387156489453422780191, −7.7368306001446051731232629022, −6.83083023846682068077063600737, −5.96597637315093534480275677670, −5.496250587390188086891994518724, −4.39409006668894139749099773309, −3.94872649995711636239474323749, −2.82020311601653832979508393201, −2.421093231783698395742989316036, −0.59230716530737870199932566384,
0.29414679665039455041151220226, 1.52423516464448286073111850936, 2.546110331664498310157678202255, 2.92363398073202539082322151607, 4.20644310037598101007914380613, 5.20753116911915996686759400761, 5.73385698729389628833648064772, 6.78460333619847021345216413504, 7.23163724293241345587351483259, 7.771276589287337936252824624202, 8.94757100204563084112854641578, 9.48299504746713556126451319071, 10.41680740429777445324174838265, 11.088660733439761583676737748991, 12.04078186952140637091540475, 12.5517640765955727133056586337, 13.20531183029794042783066192139, 13.6096086095329634582101228385, 14.74731544136244478404446576678, 15.269606461851755533867612791242, 16.274802727956066901508475460699, 16.72956900889852859653645107560, 17.77188562127573889447160659444, 17.98338231076729771309265448987, 18.866674416567196782459687823949