Properties

Label 1-3040-3040.1133-r0-0-0
Degree 11
Conductor 30403040
Sign 0.06230.998i-0.0623 - 0.998i
Analytic cond. 14.117714.1177
Root an. cond. 14.117714.1177
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.258 − 0.965i)3-s − 7-s + (−0.866 + 0.5i)9-s + (−0.707 + 0.707i)11-s + (−0.965 − 0.258i)13-s + (−0.866 − 0.5i)17-s + (0.258 + 0.965i)21-s + (0.5 + 0.866i)23-s + (0.707 + 0.707i)27-s + (−0.258 + 0.965i)29-s − 31-s + (0.866 + 0.5i)33-s + (0.707 + 0.707i)37-s i·39-s + (0.866 + 0.5i)41-s + ⋯
L(s)  = 1  + (−0.258 − 0.965i)3-s − 7-s + (−0.866 + 0.5i)9-s + (−0.707 + 0.707i)11-s + (−0.965 − 0.258i)13-s + (−0.866 − 0.5i)17-s + (0.258 + 0.965i)21-s + (0.5 + 0.866i)23-s + (0.707 + 0.707i)27-s + (−0.258 + 0.965i)29-s − 31-s + (0.866 + 0.5i)33-s + (0.707 + 0.707i)37-s i·39-s + (0.866 + 0.5i)41-s + ⋯

Functional equation

Λ(s)=(3040s/2ΓR(s)L(s)=((0.06230.998i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0623 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3040s/2ΓR(s)L(s)=((0.06230.998i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0623 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 30403040    =    255192^{5} \cdot 5 \cdot 19
Sign: 0.06230.998i-0.0623 - 0.998i
Analytic conductor: 14.117714.1177
Root analytic conductor: 14.117714.1177
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3040(1133,)\chi_{3040} (1133, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 3040, (0: ), 0.06230.998i)(1,\ 3040,\ (0:\ ),\ -0.0623 - 0.998i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.38876172830.4138175805i0.3887617283 - 0.4138175805i
L(12)L(\frac12) \approx 0.38876172830.4138175805i0.3887617283 - 0.4138175805i
L(1)L(1) \approx 0.64551015810.1641955029i0.6455101581 - 0.1641955029i
L(1)L(1) \approx 0.64551015810.1641955029i0.6455101581 - 0.1641955029i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.2580.965i)T 1 + (-0.258 - 0.965i)T
7 1T 1 - T
11 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
13 1+(0.9650.258i)T 1 + (-0.965 - 0.258i)T
17 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
23 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
29 1+(0.258+0.965i)T 1 + (-0.258 + 0.965i)T
31 1T 1 - T
37 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
41 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
43 1+(0.9650.258i)T 1 + (0.965 - 0.258i)T
47 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
53 1+(0.2580.965i)T 1 + (0.258 - 0.965i)T
59 1+(0.258+0.965i)T 1 + (0.258 + 0.965i)T
61 1+(0.258+0.965i)T 1 + (-0.258 + 0.965i)T
67 1+(0.9650.258i)T 1 + (-0.965 - 0.258i)T
71 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
73 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
79 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
83 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
89 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
97 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−19.2300731451841349477637435044, −18.66526276262458352863825165722, −17.59232456557549975005991702824, −17.03447651080103768690899877849, −16.31059510197884284465814371346, −15.86564677172936277350292311934, −15.1474329631082714594730008590, −14.46303222872366562624563574762, −13.63905696825716313034849863680, −12.75891436025802654915843077857, −12.29415557364367197896335076674, −11.04426865581638006290305496170, −10.87254441014262894618058772189, −9.9250782196608043493595527749, −9.31709875216364385332514311175, −8.75144116387156489453422780191, −7.7368306001446051731232629022, −6.83083023846682068077063600737, −5.96597637315093534480275677670, −5.496250587390188086891994518724, −4.39409006668894139749099773309, −3.94872649995711636239474323749, −2.82020311601653832979508393201, −2.421093231783698395742989316036, −0.59230716530737870199932566384, 0.29414679665039455041151220226, 1.52423516464448286073111850936, 2.546110331664498310157678202255, 2.92363398073202539082322151607, 4.20644310037598101007914380613, 5.20753116911915996686759400761, 5.73385698729389628833648064772, 6.78460333619847021345216413504, 7.23163724293241345587351483259, 7.771276589287337936252824624202, 8.94757100204563084112854641578, 9.48299504746713556126451319071, 10.41680740429777445324174838265, 11.088660733439761583676737748991, 12.04078186952140637091540475, 12.5517640765955727133056586337, 13.20531183029794042783066192139, 13.6096086095329634582101228385, 14.74731544136244478404446576678, 15.269606461851755533867612791242, 16.274802727956066901508475460699, 16.72956900889852859653645107560, 17.77188562127573889447160659444, 17.98338231076729771309265448987, 18.866674416567196782459687823949

Graph of the ZZ-function along the critical line