L(s) = 1 | + (0.996 + 0.0871i)3-s + (0.5 − 0.866i)7-s + (0.984 + 0.173i)9-s + (0.258 − 0.965i)11-s + (−0.0871 − 0.996i)13-s + (0.984 − 0.173i)17-s + (0.573 − 0.819i)21-s + (0.939 − 0.342i)23-s + (0.965 + 0.258i)27-s + (−0.573 − 0.819i)29-s + (0.5 − 0.866i)31-s + (0.342 − 0.939i)33-s + (−0.707 + 0.707i)37-s − i·39-s + (0.642 + 0.766i)41-s + ⋯ |
L(s) = 1 | + (0.996 + 0.0871i)3-s + (0.5 − 0.866i)7-s + (0.984 + 0.173i)9-s + (0.258 − 0.965i)11-s + (−0.0871 − 0.996i)13-s + (0.984 − 0.173i)17-s + (0.573 − 0.819i)21-s + (0.939 − 0.342i)23-s + (0.965 + 0.258i)27-s + (−0.573 − 0.819i)29-s + (0.5 − 0.866i)31-s + (0.342 − 0.939i)33-s + (−0.707 + 0.707i)37-s − i·39-s + (0.642 + 0.766i)41-s + ⋯ |
Λ(s)=(=(3040s/2ΓR(s)L(s)(0.309−0.951i)Λ(1−s)
Λ(s)=(=(3040s/2ΓR(s)L(s)(0.309−0.951i)Λ(1−s)
Degree: |
1 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
0.309−0.951i
|
Analytic conductor: |
14.1177 |
Root analytic conductor: |
14.1177 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(117,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3040, (0: ), 0.309−0.951i)
|
Particular Values
L(21) |
≈ |
2.372675182−1.723695317i |
L(21) |
≈ |
2.372675182−1.723695317i |
L(1) |
≈ |
1.637510885−0.4251473994i |
L(1) |
≈ |
1.637510885−0.4251473994i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(0.996+0.0871i)T |
| 7 | 1+(0.5−0.866i)T |
| 11 | 1+(0.258−0.965i)T |
| 13 | 1+(−0.0871−0.996i)T |
| 17 | 1+(0.984−0.173i)T |
| 23 | 1+(0.939−0.342i)T |
| 29 | 1+(−0.573−0.819i)T |
| 31 | 1+(0.5−0.866i)T |
| 37 | 1+(−0.707+0.707i)T |
| 41 | 1+(0.642+0.766i)T |
| 43 | 1+(−0.906+0.422i)T |
| 47 | 1+(−0.984−0.173i)T |
| 53 | 1+(0.422−0.906i)T |
| 59 | 1+(0.573−0.819i)T |
| 61 | 1+(−0.422+0.906i)T |
| 67 | 1+(−0.819+0.573i)T |
| 71 | 1+(−0.342+0.939i)T |
| 73 | 1+(−0.766+0.642i)T |
| 79 | 1+(−0.766+0.642i)T |
| 83 | 1+(−0.965+0.258i)T |
| 89 | 1+(−0.642+0.766i)T |
| 97 | 1+(0.984−0.173i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.215722539107101012641746609585, −18.581544131538365634788857739784, −17.96092179816432974303538685242, −17.14493146806614924050301264837, −16.27436483130287947400928916641, −15.49344743084555407822382774341, −14.83920618520096698411527257381, −14.42894086758327512770466071811, −13.74607685199108315357367774872, −12.73000431262147822064646868938, −12.26823804385208654531530531429, −11.57697632654859112785686108742, −10.51860478761579441265713445804, −9.76557670984418666533615293540, −8.9070778617997622720325147685, −8.77513022976007608541647603993, −7.52063715504093592226799852763, −7.22648748862501839097960555605, −6.213740834349421086753366282296, −5.13578190349665520603699865972, −4.54517540536861818416652490697, −3.56443099951485885157655272351, −2.83682092907659650730671853850, −1.795330632403863055551591963067, −1.50876335679308102971741766578,
0.78623723362241314967052496651, 1.47840459165620017967464653993, 2.72896771557007656231477561657, 3.288383299098109754271950648505, 4.04576439622733579134615272288, 4.884568637890767397180696993164, 5.75154780938946090411789806791, 6.80197375805847856707187690830, 7.556546198816195386609846115367, 8.19000058555893784486414368110, 8.63876818336230617768655997099, 9.867958945092200118343581804, 10.07583346198640901252642533270, 11.10807736220895570264314532944, 11.69730527595022552699319599741, 12.96442128989982754300383465752, 13.26199135561545445969962933261, 14.05467782267310790879968176365, 14.68773666425970263988668058098, 15.16593405269892835913600749224, 16.15362449955928722490103154290, 16.7570144508948527567207970307, 17.448728485608617506979395461036, 18.382308839572817779279403440885, 19.00320424116353762006001339640