Properties

Label 1-3040-3040.117-r0-0-0
Degree 11
Conductor 30403040
Sign 0.3090.951i0.309 - 0.951i
Analytic cond. 14.117714.1177
Root an. cond. 14.117714.1177
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.996 + 0.0871i)3-s + (0.5 − 0.866i)7-s + (0.984 + 0.173i)9-s + (0.258 − 0.965i)11-s + (−0.0871 − 0.996i)13-s + (0.984 − 0.173i)17-s + (0.573 − 0.819i)21-s + (0.939 − 0.342i)23-s + (0.965 + 0.258i)27-s + (−0.573 − 0.819i)29-s + (0.5 − 0.866i)31-s + (0.342 − 0.939i)33-s + (−0.707 + 0.707i)37-s i·39-s + (0.642 + 0.766i)41-s + ⋯
L(s)  = 1  + (0.996 + 0.0871i)3-s + (0.5 − 0.866i)7-s + (0.984 + 0.173i)9-s + (0.258 − 0.965i)11-s + (−0.0871 − 0.996i)13-s + (0.984 − 0.173i)17-s + (0.573 − 0.819i)21-s + (0.939 − 0.342i)23-s + (0.965 + 0.258i)27-s + (−0.573 − 0.819i)29-s + (0.5 − 0.866i)31-s + (0.342 − 0.939i)33-s + (−0.707 + 0.707i)37-s i·39-s + (0.642 + 0.766i)41-s + ⋯

Functional equation

Λ(s)=(3040s/2ΓR(s)L(s)=((0.3090.951i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.309 - 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3040s/2ΓR(s)L(s)=((0.3090.951i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.309 - 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 30403040    =    255192^{5} \cdot 5 \cdot 19
Sign: 0.3090.951i0.309 - 0.951i
Analytic conductor: 14.117714.1177
Root analytic conductor: 14.117714.1177
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3040(117,)\chi_{3040} (117, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 3040, (0: ), 0.3090.951i)(1,\ 3040,\ (0:\ ),\ 0.309 - 0.951i)

Particular Values

L(12)L(\frac{1}{2}) \approx 2.3726751821.723695317i2.372675182 - 1.723695317i
L(12)L(\frac12) \approx 2.3726751821.723695317i2.372675182 - 1.723695317i
L(1)L(1) \approx 1.6375108850.4251473994i1.637510885 - 0.4251473994i
L(1)L(1) \approx 1.6375108850.4251473994i1.637510885 - 0.4251473994i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.996+0.0871i)T 1 + (0.996 + 0.0871i)T
7 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
11 1+(0.2580.965i)T 1 + (0.258 - 0.965i)T
13 1+(0.08710.996i)T 1 + (-0.0871 - 0.996i)T
17 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
23 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
29 1+(0.5730.819i)T 1 + (-0.573 - 0.819i)T
31 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
37 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
41 1+(0.642+0.766i)T 1 + (0.642 + 0.766i)T
43 1+(0.906+0.422i)T 1 + (-0.906 + 0.422i)T
47 1+(0.9840.173i)T 1 + (-0.984 - 0.173i)T
53 1+(0.4220.906i)T 1 + (0.422 - 0.906i)T
59 1+(0.5730.819i)T 1 + (0.573 - 0.819i)T
61 1+(0.422+0.906i)T 1 + (-0.422 + 0.906i)T
67 1+(0.819+0.573i)T 1 + (-0.819 + 0.573i)T
71 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
73 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
79 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
83 1+(0.965+0.258i)T 1 + (-0.965 + 0.258i)T
89 1+(0.642+0.766i)T 1 + (-0.642 + 0.766i)T
97 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−19.215722539107101012641746609585, −18.581544131538365634788857739784, −17.96092179816432974303538685242, −17.14493146806614924050301264837, −16.27436483130287947400928916641, −15.49344743084555407822382774341, −14.83920618520096698411527257381, −14.42894086758327512770466071811, −13.74607685199108315357367774872, −12.73000431262147822064646868938, −12.26823804385208654531530531429, −11.57697632654859112785686108742, −10.51860478761579441265713445804, −9.76557670984418666533615293540, −8.9070778617997622720325147685, −8.77513022976007608541647603993, −7.52063715504093592226799852763, −7.22648748862501839097960555605, −6.213740834349421086753366282296, −5.13578190349665520603699865972, −4.54517540536861818416652490697, −3.56443099951485885157655272351, −2.83682092907659650730671853850, −1.795330632403863055551591963067, −1.50876335679308102971741766578, 0.78623723362241314967052496651, 1.47840459165620017967464653993, 2.72896771557007656231477561657, 3.288383299098109754271950648505, 4.04576439622733579134615272288, 4.884568637890767397180696993164, 5.75154780938946090411789806791, 6.80197375805847856707187690830, 7.556546198816195386609846115367, 8.19000058555893784486414368110, 8.63876818336230617768655997099, 9.867958945092200118343581804, 10.07583346198640901252642533270, 11.10807736220895570264314532944, 11.69730527595022552699319599741, 12.96442128989982754300383465752, 13.26199135561545445969962933261, 14.05467782267310790879968176365, 14.68773666425970263988668058098, 15.16593405269892835913600749224, 16.15362449955928722490103154290, 16.7570144508948527567207970307, 17.448728485608617506979395461036, 18.382308839572817779279403440885, 19.00320424116353762006001339640

Graph of the ZZ-function along the critical line