L(s) = 1 | + (−0.965 − 0.258i)3-s − i·7-s + (0.866 + 0.5i)9-s + (−0.707 − 0.707i)11-s + (−0.258 − 0.965i)13-s + (−0.5 − 0.866i)17-s + (−0.258 + 0.965i)21-s + (−0.866 − 0.5i)23-s + (−0.707 − 0.707i)27-s + (−0.258 − 0.965i)29-s + 31-s + (0.5 + 0.866i)33-s + (−0.707 − 0.707i)37-s + i·39-s + (−0.866 + 0.5i)41-s + ⋯ |
L(s) = 1 | + (−0.965 − 0.258i)3-s − i·7-s + (0.866 + 0.5i)9-s + (−0.707 − 0.707i)11-s + (−0.258 − 0.965i)13-s + (−0.5 − 0.866i)17-s + (−0.258 + 0.965i)21-s + (−0.866 − 0.5i)23-s + (−0.707 − 0.707i)27-s + (−0.258 − 0.965i)29-s + 31-s + (0.5 + 0.866i)33-s + (−0.707 − 0.707i)37-s + i·39-s + (−0.866 + 0.5i)41-s + ⋯ |
Λ(s)=(=(3040s/2ΓR(s)L(s)(−0.621+0.783i)Λ(1−s)
Λ(s)=(=(3040s/2ΓR(s)L(s)(−0.621+0.783i)Λ(1−s)
Degree: |
1 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
−0.621+0.783i
|
Analytic conductor: |
14.1177 |
Root analytic conductor: |
14.1177 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(1189,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3040, (0: ), −0.621+0.783i)
|
Particular Values
L(21) |
≈ |
−0.1812713147−0.3753587743i |
L(21) |
≈ |
−0.1812713147−0.3753587743i |
L(1) |
≈ |
0.5630467682−0.2937834072i |
L(1) |
≈ |
0.5630467682−0.2937834072i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(−0.965−0.258i)T |
| 7 | 1−iT |
| 11 | 1+(−0.707−0.707i)T |
| 13 | 1+(−0.258−0.965i)T |
| 17 | 1+(−0.5−0.866i)T |
| 23 | 1+(−0.866−0.5i)T |
| 29 | 1+(−0.258−0.965i)T |
| 31 | 1+T |
| 37 | 1+(−0.707−0.707i)T |
| 41 | 1+(−0.866+0.5i)T |
| 43 | 1+(0.258−0.965i)T |
| 47 | 1+(−0.5+0.866i)T |
| 53 | 1+(−0.965+0.258i)T |
| 59 | 1+(0.258−0.965i)T |
| 61 | 1+(−0.258−0.965i)T |
| 67 | 1+(0.258+0.965i)T |
| 71 | 1+(0.866−0.5i)T |
| 73 | 1+(0.866−0.5i)T |
| 79 | 1+(0.5+0.866i)T |
| 83 | 1+(−0.707+0.707i)T |
| 89 | 1+(−0.866−0.5i)T |
| 97 | 1+(0.5+0.866i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.33370846494990767488647563389, −18.63290035236114990166948922253, −18.022481871774816738212287463762, −17.47893375338436183833230186689, −16.699768634464777325579686261061, −15.97352646998003084297868883601, −15.371101275320868506215247995938, −14.896127170092081145964930909922, −13.83489876310093731202965492299, −12.92452657173908069992429540097, −12.30856150875615228747533293907, −11.79075741935616802937101375257, −11.08510696720306150969620639216, −10.20782080275872507112374376910, −9.7032099965954732281706190400, −8.84150511467899896470498710161, −8.045572250793326283333714818466, −7.00016978550291005010601163932, −6.428780424418110328380022544, −5.62960815164509549975526886039, −4.93486883820234920937585335095, −4.323404956471981886379756272990, −3.3010598266243829190044246031, −2.120793941514030925602539057275, −1.55551170446913146394166741995,
0.19296232265444952768754726173, 0.76569250895701434167250443741, 1.99325316480063372149294745626, 2.97344375796369345741657811043, 3.97282441316575063378175193675, 4.80860937432631687346766763909, 5.41895571307899717711122765274, 6.2938403907390346803406494911, 6.91702163104017315463789507297, 7.834835306715395626489007840207, 8.180828315930113291799864434780, 9.6187825510614432617598049675, 10.18342171098821789110214092895, 10.87279180657894287851263879536, 11.3482627989838211479077443963, 12.28984735065800199802118970268, 12.91086184349289197852172453562, 13.67741714518352413971277446582, 14.06752582540037598365769181463, 15.440603915360999389607634749320, 15.83893369573086880965220737439, 16.57551300210796462974416566139, 17.30043208278515215262605950597, 17.74802287077381817386467308744, 18.50661231444933741775070107589