Properties

Label 1-3040-3040.1189-r0-0-0
Degree 11
Conductor 30403040
Sign 0.621+0.783i-0.621 + 0.783i
Analytic cond. 14.117714.1177
Root an. cond. 14.117714.1177
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.965 − 0.258i)3-s i·7-s + (0.866 + 0.5i)9-s + (−0.707 − 0.707i)11-s + (−0.258 − 0.965i)13-s + (−0.5 − 0.866i)17-s + (−0.258 + 0.965i)21-s + (−0.866 − 0.5i)23-s + (−0.707 − 0.707i)27-s + (−0.258 − 0.965i)29-s + 31-s + (0.5 + 0.866i)33-s + (−0.707 − 0.707i)37-s + i·39-s + (−0.866 + 0.5i)41-s + ⋯
L(s)  = 1  + (−0.965 − 0.258i)3-s i·7-s + (0.866 + 0.5i)9-s + (−0.707 − 0.707i)11-s + (−0.258 − 0.965i)13-s + (−0.5 − 0.866i)17-s + (−0.258 + 0.965i)21-s + (−0.866 − 0.5i)23-s + (−0.707 − 0.707i)27-s + (−0.258 − 0.965i)29-s + 31-s + (0.5 + 0.866i)33-s + (−0.707 − 0.707i)37-s + i·39-s + (−0.866 + 0.5i)41-s + ⋯

Functional equation

Λ(s)=(3040s/2ΓR(s)L(s)=((0.621+0.783i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.621 + 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3040s/2ΓR(s)L(s)=((0.621+0.783i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.621 + 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 30403040    =    255192^{5} \cdot 5 \cdot 19
Sign: 0.621+0.783i-0.621 + 0.783i
Analytic conductor: 14.117714.1177
Root analytic conductor: 14.117714.1177
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3040(1189,)\chi_{3040} (1189, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 3040, (0: ), 0.621+0.783i)(1,\ 3040,\ (0:\ ),\ -0.621 + 0.783i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.18127131470.3753587743i-0.1812713147 - 0.3753587743i
L(12)L(\frac12) \approx 0.18127131470.3753587743i-0.1812713147 - 0.3753587743i
L(1)L(1) \approx 0.56304676820.2937834072i0.5630467682 - 0.2937834072i
L(1)L(1) \approx 0.56304676820.2937834072i0.5630467682 - 0.2937834072i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.9650.258i)T 1 + (-0.965 - 0.258i)T
7 1iT 1 - iT
11 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
13 1+(0.2580.965i)T 1 + (-0.258 - 0.965i)T
17 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
23 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
29 1+(0.2580.965i)T 1 + (-0.258 - 0.965i)T
31 1+T 1 + T
37 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
41 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
43 1+(0.2580.965i)T 1 + (0.258 - 0.965i)T
47 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
53 1+(0.965+0.258i)T 1 + (-0.965 + 0.258i)T
59 1+(0.2580.965i)T 1 + (0.258 - 0.965i)T
61 1+(0.2580.965i)T 1 + (-0.258 - 0.965i)T
67 1+(0.258+0.965i)T 1 + (0.258 + 0.965i)T
71 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
73 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
79 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
83 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
89 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
97 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−19.33370846494990767488647563389, −18.63290035236114990166948922253, −18.022481871774816738212287463762, −17.47893375338436183833230186689, −16.699768634464777325579686261061, −15.97352646998003084297868883601, −15.371101275320868506215247995938, −14.896127170092081145964930909922, −13.83489876310093731202965492299, −12.92452657173908069992429540097, −12.30856150875615228747533293907, −11.79075741935616802937101375257, −11.08510696720306150969620639216, −10.20782080275872507112374376910, −9.7032099965954732281706190400, −8.84150511467899896470498710161, −8.045572250793326283333714818466, −7.00016978550291005010601163932, −6.428780424418110328380022544, −5.62960815164509549975526886039, −4.93486883820234920937585335095, −4.323404956471981886379756272990, −3.3010598266243829190044246031, −2.120793941514030925602539057275, −1.55551170446913146394166741995, 0.19296232265444952768754726173, 0.76569250895701434167250443741, 1.99325316480063372149294745626, 2.97344375796369345741657811043, 3.97282441316575063378175193675, 4.80860937432631687346766763909, 5.41895571307899717711122765274, 6.2938403907390346803406494911, 6.91702163104017315463789507297, 7.834835306715395626489007840207, 8.180828315930113291799864434780, 9.6187825510614432617598049675, 10.18342171098821789110214092895, 10.87279180657894287851263879536, 11.3482627989838211479077443963, 12.28984735065800199802118970268, 12.91086184349289197852172453562, 13.67741714518352413971277446582, 14.06752582540037598365769181463, 15.440603915360999389607634749320, 15.83893369573086880965220737439, 16.57551300210796462974416566139, 17.30043208278515215262605950597, 17.74802287077381817386467308744, 18.50661231444933741775070107589

Graph of the ZZ-function along the critical line