L(s) = 1 | + (−0.996 + 0.0871i)3-s + (−0.5 − 0.866i)7-s + (0.984 − 0.173i)9-s + (0.258 + 0.965i)11-s + (−0.0871 + 0.996i)13-s + (0.984 + 0.173i)17-s + (0.573 + 0.819i)21-s + (−0.939 − 0.342i)23-s + (−0.965 + 0.258i)27-s + (−0.573 + 0.819i)29-s + (0.5 + 0.866i)31-s + (−0.342 − 0.939i)33-s + (−0.707 − 0.707i)37-s − i·39-s + (−0.642 + 0.766i)41-s + ⋯ |
L(s) = 1 | + (−0.996 + 0.0871i)3-s + (−0.5 − 0.866i)7-s + (0.984 − 0.173i)9-s + (0.258 + 0.965i)11-s + (−0.0871 + 0.996i)13-s + (0.984 + 0.173i)17-s + (0.573 + 0.819i)21-s + (−0.939 − 0.342i)23-s + (−0.965 + 0.258i)27-s + (−0.573 + 0.819i)29-s + (0.5 + 0.866i)31-s + (−0.342 − 0.939i)33-s + (−0.707 − 0.707i)37-s − i·39-s + (−0.642 + 0.766i)41-s + ⋯ |
Λ(s)=(=(3040s/2ΓR(s)L(s)(−0.988+0.153i)Λ(1−s)
Λ(s)=(=(3040s/2ΓR(s)L(s)(−0.988+0.153i)Λ(1−s)
Degree: |
1 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
−0.988+0.153i
|
Analytic conductor: |
14.1177 |
Root analytic conductor: |
14.1177 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(1203,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3040, (0: ), −0.988+0.153i)
|
Particular Values
L(21) |
≈ |
0.01888220686+0.2444015111i |
L(21) |
≈ |
0.01888220686+0.2444015111i |
L(1) |
≈ |
0.6513305494+0.07169197262i |
L(1) |
≈ |
0.6513305494+0.07169197262i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(−0.996+0.0871i)T |
| 7 | 1+(−0.5−0.866i)T |
| 11 | 1+(0.258+0.965i)T |
| 13 | 1+(−0.0871+0.996i)T |
| 17 | 1+(0.984+0.173i)T |
| 23 | 1+(−0.939−0.342i)T |
| 29 | 1+(−0.573+0.819i)T |
| 31 | 1+(0.5+0.866i)T |
| 37 | 1+(−0.707−0.707i)T |
| 41 | 1+(−0.642+0.766i)T |
| 43 | 1+(−0.906−0.422i)T |
| 47 | 1+(0.984−0.173i)T |
| 53 | 1+(0.422+0.906i)T |
| 59 | 1+(−0.573−0.819i)T |
| 61 | 1+(0.422+0.906i)T |
| 67 | 1+(0.819+0.573i)T |
| 71 | 1+(−0.342−0.939i)T |
| 73 | 1+(−0.766−0.642i)T |
| 79 | 1+(−0.766−0.642i)T |
| 83 | 1+(−0.965−0.258i)T |
| 89 | 1+(0.642+0.766i)T |
| 97 | 1+(−0.984−0.173i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.772708535453452600088203515188, −18.07782974396076690158174628950, −17.14515510908293582671763933306, −16.79654527888701734312891143507, −15.75211997697940772134390460833, −15.60668762424881818870671362247, −14.58494710985790564283993367248, −13.57722669945715238800457361903, −13.03129104490883763169050518722, −12.12790550804418400430609759753, −11.800798854923408041626193323163, −11.03604302546259134453194706116, −10.01593323351968510521873205891, −9.78353386225031362989239631482, −8.57286936969309162026083706537, −7.94535690272254460043010721713, −7.027132819827760201709206611565, −6.06346331862553461611762082314, −5.73962607228276459263109969873, −5.11312838662821925328978407432, −3.9147235492897632890153320695, −3.20541485419797148745680964143, −2.20019587357214708511693769389, −1.08705619657773726428417337094, −0.0990857631164895514789298076,
1.231092793657381316548088968719, 1.88472152483390022122408332979, 3.32664118042003873674814889515, 4.10389897251428143919609195600, 4.67209517845253127791773768436, 5.57468389184959496063295506034, 6.43208951886229857014276566708, 7.047742218943437259501870712672, 7.51964225754101785302198300833, 8.76005058181528320571452517662, 9.698024970761220618940061172789, 10.16903274227337068477104521822, 10.74376167107705500507054480731, 11.765126522473862360979319156731, 12.21698308996364273949184942461, 12.84819844817923812524517721003, 13.78901880492315270891878237063, 14.41156972685883527634375669438, 15.292681239526343084210599562307, 16.169578100207013294017184035180, 16.60704926368406402888108820705, 17.16902864330709440904135797408, 17.868077756778489946535285211, 18.611206902750373470585790457119, 19.27839643172202949302633870183