Properties

Label 1-3040-3040.1203-r0-0-0
Degree 11
Conductor 30403040
Sign 0.988+0.153i-0.988 + 0.153i
Analytic cond. 14.117714.1177
Root an. cond. 14.117714.1177
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.996 + 0.0871i)3-s + (−0.5 − 0.866i)7-s + (0.984 − 0.173i)9-s + (0.258 + 0.965i)11-s + (−0.0871 + 0.996i)13-s + (0.984 + 0.173i)17-s + (0.573 + 0.819i)21-s + (−0.939 − 0.342i)23-s + (−0.965 + 0.258i)27-s + (−0.573 + 0.819i)29-s + (0.5 + 0.866i)31-s + (−0.342 − 0.939i)33-s + (−0.707 − 0.707i)37-s i·39-s + (−0.642 + 0.766i)41-s + ⋯
L(s)  = 1  + (−0.996 + 0.0871i)3-s + (−0.5 − 0.866i)7-s + (0.984 − 0.173i)9-s + (0.258 + 0.965i)11-s + (−0.0871 + 0.996i)13-s + (0.984 + 0.173i)17-s + (0.573 + 0.819i)21-s + (−0.939 − 0.342i)23-s + (−0.965 + 0.258i)27-s + (−0.573 + 0.819i)29-s + (0.5 + 0.866i)31-s + (−0.342 − 0.939i)33-s + (−0.707 − 0.707i)37-s i·39-s + (−0.642 + 0.766i)41-s + ⋯

Functional equation

Λ(s)=(3040s/2ΓR(s)L(s)=((0.988+0.153i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.988 + 0.153i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3040s/2ΓR(s)L(s)=((0.988+0.153i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.988 + 0.153i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 30403040    =    255192^{5} \cdot 5 \cdot 19
Sign: 0.988+0.153i-0.988 + 0.153i
Analytic conductor: 14.117714.1177
Root analytic conductor: 14.117714.1177
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3040(1203,)\chi_{3040} (1203, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 3040, (0: ), 0.988+0.153i)(1,\ 3040,\ (0:\ ),\ -0.988 + 0.153i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.01888220686+0.2444015111i0.01888220686 + 0.2444015111i
L(12)L(\frac12) \approx 0.01888220686+0.2444015111i0.01888220686 + 0.2444015111i
L(1)L(1) \approx 0.6513305494+0.07169197262i0.6513305494 + 0.07169197262i
L(1)L(1) \approx 0.6513305494+0.07169197262i0.6513305494 + 0.07169197262i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.996+0.0871i)T 1 + (-0.996 + 0.0871i)T
7 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
11 1+(0.258+0.965i)T 1 + (0.258 + 0.965i)T
13 1+(0.0871+0.996i)T 1 + (-0.0871 + 0.996i)T
17 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
23 1+(0.9390.342i)T 1 + (-0.939 - 0.342i)T
29 1+(0.573+0.819i)T 1 + (-0.573 + 0.819i)T
31 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
37 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
41 1+(0.642+0.766i)T 1 + (-0.642 + 0.766i)T
43 1+(0.9060.422i)T 1 + (-0.906 - 0.422i)T
47 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
53 1+(0.422+0.906i)T 1 + (0.422 + 0.906i)T
59 1+(0.5730.819i)T 1 + (-0.573 - 0.819i)T
61 1+(0.422+0.906i)T 1 + (0.422 + 0.906i)T
67 1+(0.819+0.573i)T 1 + (0.819 + 0.573i)T
71 1+(0.3420.939i)T 1 + (-0.342 - 0.939i)T
73 1+(0.7660.642i)T 1 + (-0.766 - 0.642i)T
79 1+(0.7660.642i)T 1 + (-0.766 - 0.642i)T
83 1+(0.9650.258i)T 1 + (-0.965 - 0.258i)T
89 1+(0.642+0.766i)T 1 + (0.642 + 0.766i)T
97 1+(0.9840.173i)T 1 + (-0.984 - 0.173i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.772708535453452600088203515188, −18.07782974396076690158174628950, −17.14515510908293582671763933306, −16.79654527888701734312891143507, −15.75211997697940772134390460833, −15.60668762424881818870671362247, −14.58494710985790564283993367248, −13.57722669945715238800457361903, −13.03129104490883763169050518722, −12.12790550804418400430609759753, −11.800798854923408041626193323163, −11.03604302546259134453194706116, −10.01593323351968510521873205891, −9.78353386225031362989239631482, −8.57286936969309162026083706537, −7.94535690272254460043010721713, −7.027132819827760201709206611565, −6.06346331862553461611762082314, −5.73962607228276459263109969873, −5.11312838662821925328978407432, −3.9147235492897632890153320695, −3.20541485419797148745680964143, −2.20019587357214708511693769389, −1.08705619657773726428417337094, −0.0990857631164895514789298076, 1.231092793657381316548088968719, 1.88472152483390022122408332979, 3.32664118042003873674814889515, 4.10389897251428143919609195600, 4.67209517845253127791773768436, 5.57468389184959496063295506034, 6.43208951886229857014276566708, 7.047742218943437259501870712672, 7.51964225754101785302198300833, 8.76005058181528320571452517662, 9.698024970761220618940061172789, 10.16903274227337068477104521822, 10.74376167107705500507054480731, 11.765126522473862360979319156731, 12.21698308996364273949184942461, 12.84819844817923812524517721003, 13.78901880492315270891878237063, 14.41156972685883527634375669438, 15.292681239526343084210599562307, 16.169578100207013294017184035180, 16.60704926368406402888108820705, 17.16902864330709440904135797408, 17.868077756778489946535285211, 18.611206902750373470585790457119, 19.27839643172202949302633870183

Graph of the ZZ-function along the critical line