Properties

Label 1-3040-3040.123-r0-0-0
Degree 11
Conductor 30403040
Sign 0.579+0.814i-0.579 + 0.814i
Analytic cond. 14.117714.1177
Root an. cond. 14.117714.1177
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.819 − 0.573i)3-s + (0.5 + 0.866i)7-s + (0.342 − 0.939i)9-s + (−0.965 + 0.258i)11-s + (−0.573 + 0.819i)13-s + (−0.342 − 0.939i)17-s + (0.906 + 0.422i)21-s + (−0.766 + 0.642i)23-s + (−0.258 − 0.965i)27-s + (−0.906 + 0.422i)29-s + (0.5 + 0.866i)31-s + (−0.642 + 0.766i)33-s + (0.707 − 0.707i)37-s i·39-s + (−0.984 − 0.173i)41-s + ⋯
L(s)  = 1  + (0.819 − 0.573i)3-s + (0.5 + 0.866i)7-s + (0.342 − 0.939i)9-s + (−0.965 + 0.258i)11-s + (−0.573 + 0.819i)13-s + (−0.342 − 0.939i)17-s + (0.906 + 0.422i)21-s + (−0.766 + 0.642i)23-s + (−0.258 − 0.965i)27-s + (−0.906 + 0.422i)29-s + (0.5 + 0.866i)31-s + (−0.642 + 0.766i)33-s + (0.707 − 0.707i)37-s i·39-s + (−0.984 − 0.173i)41-s + ⋯

Functional equation

Λ(s)=(3040s/2ΓR(s)L(s)=((0.579+0.814i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.579 + 0.814i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3040s/2ΓR(s)L(s)=((0.579+0.814i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.579 + 0.814i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 30403040    =    255192^{5} \cdot 5 \cdot 19
Sign: 0.579+0.814i-0.579 + 0.814i
Analytic conductor: 14.117714.1177
Root analytic conductor: 14.117714.1177
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3040(123,)\chi_{3040} (123, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 3040, (0: ), 0.579+0.814i)(1,\ 3040,\ (0:\ ),\ -0.579 + 0.814i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.3646407976+0.7070556306i0.3646407976 + 0.7070556306i
L(12)L(\frac12) \approx 0.3646407976+0.7070556306i0.3646407976 + 0.7070556306i
L(1)L(1) \approx 1.092730682+0.01526790464i1.092730682 + 0.01526790464i
L(1)L(1) \approx 1.092730682+0.01526790464i1.092730682 + 0.01526790464i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.8190.573i)T 1 + (0.819 - 0.573i)T
7 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
11 1+(0.965+0.258i)T 1 + (-0.965 + 0.258i)T
13 1+(0.573+0.819i)T 1 + (-0.573 + 0.819i)T
17 1+(0.3420.939i)T 1 + (-0.342 - 0.939i)T
23 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
29 1+(0.906+0.422i)T 1 + (-0.906 + 0.422i)T
31 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
37 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
41 1+(0.9840.173i)T 1 + (-0.984 - 0.173i)T
43 1+(0.996+0.0871i)T 1 + (-0.996 + 0.0871i)T
47 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
53 1+(0.08710.996i)T 1 + (0.0871 - 0.996i)T
59 1+(0.9060.422i)T 1 + (-0.906 - 0.422i)T
61 1+(0.0871+0.996i)T 1 + (-0.0871 + 0.996i)T
67 1+(0.422+0.906i)T 1 + (0.422 + 0.906i)T
71 1+(0.6420.766i)T 1 + (0.642 - 0.766i)T
73 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
79 1+(0.173+0.984i)T 1 + (-0.173 + 0.984i)T
83 1+(0.258+0.965i)T 1 + (-0.258 + 0.965i)T
89 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
97 1+(0.342+0.939i)T 1 + (0.342 + 0.939i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.741657046409406892462215882354, −18.28790648850405036807987280895, −17.0959232456188830052130094411, −16.88114233246022415737864627962, −15.85334053703701513040794952410, −15.13429522066864044249280381451, −14.80744739236922307147823652142, −13.81370286272700179101964841894, −13.34246911166676407942056177930, −12.71940956423692340447033925046, −11.56089239448978463494503793483, −10.74143639642261153181771432909, −10.227115936404260056436984198549, −9.745139906292880497334438069070, −8.5697117451517147205717990003, −7.98044816884991669718951080772, −7.664116702546069561435615201185, −6.53449730781423349658176009825, −5.48974416296720769556735477258, −4.73894486203884558704866576217, −4.0744492705127150829351622578, −3.27231023385823442744108818754, −2.43036185560497254961889621478, −1.638350422339934958385013392168, −0.1869691592606181237126862721, 1.43957111268028537984183165601, 2.184909918631710888524745841524, 2.70689281384722676820884413798, 3.67158481101546254736409301292, 4.75524075877643946678001163836, 5.33652792955033188202913675549, 6.404438848977652858698384212083, 7.16072181033565896830974890294, 7.84094315906587646999438502238, 8.446923392866269554191496583432, 9.33406580873370745442152424258, 9.68867167935509684282644951753, 10.8515509280516992628728547103, 11.77817454257763578557870865428, 12.173029864033313113871044562676, 13.04905372098247807857305036750, 13.67523611442641163227236929809, 14.410149612350987811566165306903, 14.97306075964882205333643302486, 15.692730097187034447417520310101, 16.30663451049570443543340619286, 17.48817237006647590614148010224, 18.10632282769215175325588588430, 18.508543272690405393988671061436, 19.22349519773175628332140581944

Graph of the ZZ-function along the critical line