L(s) = 1 | + (0.819 − 0.573i)3-s + (0.5 + 0.866i)7-s + (0.342 − 0.939i)9-s + (−0.965 + 0.258i)11-s + (−0.573 + 0.819i)13-s + (−0.342 − 0.939i)17-s + (0.906 + 0.422i)21-s + (−0.766 + 0.642i)23-s + (−0.258 − 0.965i)27-s + (−0.906 + 0.422i)29-s + (0.5 + 0.866i)31-s + (−0.642 + 0.766i)33-s + (0.707 − 0.707i)37-s − i·39-s + (−0.984 − 0.173i)41-s + ⋯ |
L(s) = 1 | + (0.819 − 0.573i)3-s + (0.5 + 0.866i)7-s + (0.342 − 0.939i)9-s + (−0.965 + 0.258i)11-s + (−0.573 + 0.819i)13-s + (−0.342 − 0.939i)17-s + (0.906 + 0.422i)21-s + (−0.766 + 0.642i)23-s + (−0.258 − 0.965i)27-s + (−0.906 + 0.422i)29-s + (0.5 + 0.866i)31-s + (−0.642 + 0.766i)33-s + (0.707 − 0.707i)37-s − i·39-s + (−0.984 − 0.173i)41-s + ⋯ |
Λ(s)=(=(3040s/2ΓR(s)L(s)(−0.579+0.814i)Λ(1−s)
Λ(s)=(=(3040s/2ΓR(s)L(s)(−0.579+0.814i)Λ(1−s)
Degree: |
1 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
−0.579+0.814i
|
Analytic conductor: |
14.1177 |
Root analytic conductor: |
14.1177 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(123,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3040, (0: ), −0.579+0.814i)
|
Particular Values
L(21) |
≈ |
0.3646407976+0.7070556306i |
L(21) |
≈ |
0.3646407976+0.7070556306i |
L(1) |
≈ |
1.092730682+0.01526790464i |
L(1) |
≈ |
1.092730682+0.01526790464i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(0.819−0.573i)T |
| 7 | 1+(0.5+0.866i)T |
| 11 | 1+(−0.965+0.258i)T |
| 13 | 1+(−0.573+0.819i)T |
| 17 | 1+(−0.342−0.939i)T |
| 23 | 1+(−0.766+0.642i)T |
| 29 | 1+(−0.906+0.422i)T |
| 31 | 1+(0.5+0.866i)T |
| 37 | 1+(0.707−0.707i)T |
| 41 | 1+(−0.984−0.173i)T |
| 43 | 1+(−0.996+0.0871i)T |
| 47 | 1+(−0.342+0.939i)T |
| 53 | 1+(0.0871−0.996i)T |
| 59 | 1+(−0.906−0.422i)T |
| 61 | 1+(−0.0871+0.996i)T |
| 67 | 1+(0.422+0.906i)T |
| 71 | 1+(0.642−0.766i)T |
| 73 | 1+(0.173−0.984i)T |
| 79 | 1+(−0.173+0.984i)T |
| 83 | 1+(−0.258+0.965i)T |
| 89 | 1+(0.984−0.173i)T |
| 97 | 1+(0.342+0.939i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.741657046409406892462215882354, −18.28790648850405036807987280895, −17.0959232456188830052130094411, −16.88114233246022415737864627962, −15.85334053703701513040794952410, −15.13429522066864044249280381451, −14.80744739236922307147823652142, −13.81370286272700179101964841894, −13.34246911166676407942056177930, −12.71940956423692340447033925046, −11.56089239448978463494503793483, −10.74143639642261153181771432909, −10.227115936404260056436984198549, −9.745139906292880497334438069070, −8.5697117451517147205717990003, −7.98044816884991669718951080772, −7.664116702546069561435615201185, −6.53449730781423349658176009825, −5.48974416296720769556735477258, −4.73894486203884558704866576217, −4.0744492705127150829351622578, −3.27231023385823442744108818754, −2.43036185560497254961889621478, −1.638350422339934958385013392168, −0.1869691592606181237126862721,
1.43957111268028537984183165601, 2.184909918631710888524745841524, 2.70689281384722676820884413798, 3.67158481101546254736409301292, 4.75524075877643946678001163836, 5.33652792955033188202913675549, 6.404438848977652858698384212083, 7.16072181033565896830974890294, 7.84094315906587646999438502238, 8.446923392866269554191496583432, 9.33406580873370745442152424258, 9.68867167935509684282644951753, 10.8515509280516992628728547103, 11.77817454257763578557870865428, 12.173029864033313113871044562676, 13.04905372098247807857305036750, 13.67523611442641163227236929809, 14.410149612350987811566165306903, 14.97306075964882205333643302486, 15.692730097187034447417520310101, 16.30663451049570443543340619286, 17.48817237006647590614148010224, 18.10632282769215175325588588430, 18.508543272690405393988671061436, 19.22349519773175628332140581944