Properties

Label 1-3040-3040.1237-r0-0-0
Degree 11
Conductor 30403040
Sign 0.727+0.686i-0.727 + 0.686i
Analytic cond. 14.117714.1177
Root an. cond. 14.117714.1177
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.573 + 0.819i)3-s + (0.5 − 0.866i)7-s + (−0.342 − 0.939i)9-s + (0.258 − 0.965i)11-s + (−0.819 + 0.573i)13-s + (−0.342 + 0.939i)17-s + (0.422 + 0.906i)21-s + (−0.766 − 0.642i)23-s + (0.965 + 0.258i)27-s + (−0.422 + 0.906i)29-s + (0.5 − 0.866i)31-s + (0.642 + 0.766i)33-s + (−0.707 + 0.707i)37-s i·39-s + (−0.984 + 0.173i)41-s + ⋯
L(s)  = 1  + (−0.573 + 0.819i)3-s + (0.5 − 0.866i)7-s + (−0.342 − 0.939i)9-s + (0.258 − 0.965i)11-s + (−0.819 + 0.573i)13-s + (−0.342 + 0.939i)17-s + (0.422 + 0.906i)21-s + (−0.766 − 0.642i)23-s + (0.965 + 0.258i)27-s + (−0.422 + 0.906i)29-s + (0.5 − 0.866i)31-s + (0.642 + 0.766i)33-s + (−0.707 + 0.707i)37-s i·39-s + (−0.984 + 0.173i)41-s + ⋯

Functional equation

Λ(s)=(3040s/2ΓR(s)L(s)=((0.727+0.686i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.727 + 0.686i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3040s/2ΓR(s)L(s)=((0.727+0.686i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.727 + 0.686i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 30403040    =    255192^{5} \cdot 5 \cdot 19
Sign: 0.727+0.686i-0.727 + 0.686i
Analytic conductor: 14.117714.1177
Root analytic conductor: 14.117714.1177
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3040(1237,)\chi_{3040} (1237, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 3040, (0: ), 0.727+0.686i)(1,\ 3040,\ (0:\ ),\ -0.727 + 0.686i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.1890796287+0.4756203018i0.1890796287 + 0.4756203018i
L(12)L(\frac12) \approx 0.1890796287+0.4756203018i0.1890796287 + 0.4756203018i
L(1)L(1) \approx 0.7458281282+0.1297536769i0.7458281282 + 0.1297536769i
L(1)L(1) \approx 0.7458281282+0.1297536769i0.7458281282 + 0.1297536769i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.573+0.819i)T 1 + (-0.573 + 0.819i)T
7 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
11 1+(0.2580.965i)T 1 + (0.258 - 0.965i)T
13 1+(0.819+0.573i)T 1 + (-0.819 + 0.573i)T
17 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
23 1+(0.7660.642i)T 1 + (-0.766 - 0.642i)T
29 1+(0.422+0.906i)T 1 + (-0.422 + 0.906i)T
31 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
37 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
41 1+(0.984+0.173i)T 1 + (-0.984 + 0.173i)T
43 1+(0.08710.996i)T 1 + (0.0871 - 0.996i)T
47 1+(0.342+0.939i)T 1 + (0.342 + 0.939i)T
53 1+(0.996+0.0871i)T 1 + (-0.996 + 0.0871i)T
59 1+(0.422+0.906i)T 1 + (0.422 + 0.906i)T
61 1+(0.9960.0871i)T 1 + (0.996 - 0.0871i)T
67 1+(0.906+0.422i)T 1 + (0.906 + 0.422i)T
71 1+(0.6420.766i)T 1 + (-0.642 - 0.766i)T
73 1+(0.1730.984i)T 1 + (-0.173 - 0.984i)T
79 1+(0.1730.984i)T 1 + (-0.173 - 0.984i)T
83 1+(0.965+0.258i)T 1 + (-0.965 + 0.258i)T
89 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
97 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.68146146023835248098635742521, −17.8646791654897666579039555517, −17.64341948869635119626958534830, −16.95726839607162166122795278390, −15.848604968491464407196639354901, −15.41816115907319136435230339765, −14.44474363259762669861543902084, −13.924653078108996400169285179514, −12.883682434141354078439570856829, −12.43279568830151793207360644262, −11.68903827571115096973251790594, −11.362498174856485499924882982275, −10.17212560910922242618406193423, −9.61240250889735698279057937164, −8.58331377150828238237243309454, −7.88622545271469576293928179838, −7.18480083341199077605575410518, −6.56662541318221068041356771565, −5.48371875745825405639981961127, −5.170090824875778126758998314922, −4.27312526033119627782568950876, −2.89822691153425888469085481793, −2.16391720052688130061951820965, −1.55053809536564146410713938060, −0.18569392015937749427808515034, 0.98133126432505941862906808691, 2.041105482415105016415685402712, 3.290532168019750200763827615313, 3.9928428057068567347932684797, 4.587260167860610183229729912185, 5.37102357967271872896087904587, 6.27019817337013837669178886558, 6.84104073341193694994077444950, 7.90008230856148286293369508190, 8.6457374027263650393122036654, 9.38386370759479707281976551771, 10.381973087586216254850472546234, 10.582921095334964482489941487119, 11.54080673583843967898334819549, 11.95637510898181591426030707237, 12.97550185779431333756083016417, 13.872748044645229397736561688048, 14.47175674264590174146399636775, 15.057804704902910805349731734369, 15.993727770763036381967051067077, 16.599523934756311144971593201272, 17.16309777897108998989583840243, 17.56383991759388361621978970922, 18.63364188202940261075912173359, 19.29693852264783128625061361551

Graph of the ZZ-function along the critical line