L(s) = 1 | + (−0.573 + 0.819i)3-s + (0.5 − 0.866i)7-s + (−0.342 − 0.939i)9-s + (0.258 − 0.965i)11-s + (−0.819 + 0.573i)13-s + (−0.342 + 0.939i)17-s + (0.422 + 0.906i)21-s + (−0.766 − 0.642i)23-s + (0.965 + 0.258i)27-s + (−0.422 + 0.906i)29-s + (0.5 − 0.866i)31-s + (0.642 + 0.766i)33-s + (−0.707 + 0.707i)37-s − i·39-s + (−0.984 + 0.173i)41-s + ⋯ |
L(s) = 1 | + (−0.573 + 0.819i)3-s + (0.5 − 0.866i)7-s + (−0.342 − 0.939i)9-s + (0.258 − 0.965i)11-s + (−0.819 + 0.573i)13-s + (−0.342 + 0.939i)17-s + (0.422 + 0.906i)21-s + (−0.766 − 0.642i)23-s + (0.965 + 0.258i)27-s + (−0.422 + 0.906i)29-s + (0.5 − 0.866i)31-s + (0.642 + 0.766i)33-s + (−0.707 + 0.707i)37-s − i·39-s + (−0.984 + 0.173i)41-s + ⋯ |
Λ(s)=(=(3040s/2ΓR(s)L(s)(−0.727+0.686i)Λ(1−s)
Λ(s)=(=(3040s/2ΓR(s)L(s)(−0.727+0.686i)Λ(1−s)
Degree: |
1 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
−0.727+0.686i
|
Analytic conductor: |
14.1177 |
Root analytic conductor: |
14.1177 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(1237,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3040, (0: ), −0.727+0.686i)
|
Particular Values
L(21) |
≈ |
0.1890796287+0.4756203018i |
L(21) |
≈ |
0.1890796287+0.4756203018i |
L(1) |
≈ |
0.7458281282+0.1297536769i |
L(1) |
≈ |
0.7458281282+0.1297536769i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(−0.573+0.819i)T |
| 7 | 1+(0.5−0.866i)T |
| 11 | 1+(0.258−0.965i)T |
| 13 | 1+(−0.819+0.573i)T |
| 17 | 1+(−0.342+0.939i)T |
| 23 | 1+(−0.766−0.642i)T |
| 29 | 1+(−0.422+0.906i)T |
| 31 | 1+(0.5−0.866i)T |
| 37 | 1+(−0.707+0.707i)T |
| 41 | 1+(−0.984+0.173i)T |
| 43 | 1+(0.0871−0.996i)T |
| 47 | 1+(0.342+0.939i)T |
| 53 | 1+(−0.996+0.0871i)T |
| 59 | 1+(0.422+0.906i)T |
| 61 | 1+(0.996−0.0871i)T |
| 67 | 1+(0.906+0.422i)T |
| 71 | 1+(−0.642−0.766i)T |
| 73 | 1+(−0.173−0.984i)T |
| 79 | 1+(−0.173−0.984i)T |
| 83 | 1+(−0.965+0.258i)T |
| 89 | 1+(0.984+0.173i)T |
| 97 | 1+(−0.342+0.939i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.68146146023835248098635742521, −17.8646791654897666579039555517, −17.64341948869635119626958534830, −16.95726839607162166122795278390, −15.848604968491464407196639354901, −15.41816115907319136435230339765, −14.44474363259762669861543902084, −13.924653078108996400169285179514, −12.883682434141354078439570856829, −12.43279568830151793207360644262, −11.68903827571115096973251790594, −11.362498174856485499924882982275, −10.17212560910922242618406193423, −9.61240250889735698279057937164, −8.58331377150828238237243309454, −7.88622545271469576293928179838, −7.18480083341199077605575410518, −6.56662541318221068041356771565, −5.48371875745825405639981961127, −5.170090824875778126758998314922, −4.27312526033119627782568950876, −2.89822691153425888469085481793, −2.16391720052688130061951820965, −1.55053809536564146410713938060, −0.18569392015937749427808515034,
0.98133126432505941862906808691, 2.041105482415105016415685402712, 3.290532168019750200763827615313, 3.9928428057068567347932684797, 4.587260167860610183229729912185, 5.37102357967271872896087904587, 6.27019817337013837669178886558, 6.84104073341193694994077444950, 7.90008230856148286293369508190, 8.6457374027263650393122036654, 9.38386370759479707281976551771, 10.381973087586216254850472546234, 10.582921095334964482489941487119, 11.54080673583843967898334819549, 11.95637510898181591426030707237, 12.97550185779431333756083016417, 13.872748044645229397736561688048, 14.47175674264590174146399636775, 15.057804704902910805349731734369, 15.993727770763036381967051067077, 16.599523934756311144971593201272, 17.16309777897108998989583840243, 17.56383991759388361621978970922, 18.63364188202940261075912173359, 19.29693852264783128625061361551