L(s) = 1 | + (0.573 − 0.819i)3-s + (−0.866 − 0.5i)7-s + (−0.342 − 0.939i)9-s + (−0.965 − 0.258i)11-s + (0.819 − 0.573i)13-s + (−0.939 − 0.342i)17-s + (−0.906 + 0.422i)21-s + (0.642 − 0.766i)23-s + (−0.965 − 0.258i)27-s + (−0.906 − 0.422i)29-s + (−0.5 + 0.866i)31-s + (−0.766 + 0.642i)33-s + (0.707 − 0.707i)37-s − i·39-s + (−0.984 + 0.173i)41-s + ⋯ |
L(s) = 1 | + (0.573 − 0.819i)3-s + (−0.866 − 0.5i)7-s + (−0.342 − 0.939i)9-s + (−0.965 − 0.258i)11-s + (0.819 − 0.573i)13-s + (−0.939 − 0.342i)17-s + (−0.906 + 0.422i)21-s + (0.642 − 0.766i)23-s + (−0.965 − 0.258i)27-s + (−0.906 − 0.422i)29-s + (−0.5 + 0.866i)31-s + (−0.766 + 0.642i)33-s + (0.707 − 0.707i)37-s − i·39-s + (−0.984 + 0.173i)41-s + ⋯ |
Λ(s)=(=(3040s/2ΓR(s)L(s)(−0.388+0.921i)Λ(1−s)
Λ(s)=(=(3040s/2ΓR(s)L(s)(−0.388+0.921i)Λ(1−s)
Degree: |
1 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
−0.388+0.921i
|
Analytic conductor: |
14.1177 |
Root analytic conductor: |
14.1177 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(1309,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3040, (0: ), −0.388+0.921i)
|
Particular Values
L(21) |
≈ |
−0.1763990965−0.2657253200i |
L(21) |
≈ |
−0.1763990965−0.2657253200i |
L(1) |
≈ |
0.7869919601−0.4174354884i |
L(1) |
≈ |
0.7869919601−0.4174354884i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(0.573−0.819i)T |
| 7 | 1+(−0.866−0.5i)T |
| 11 | 1+(−0.965−0.258i)T |
| 13 | 1+(0.819−0.573i)T |
| 17 | 1+(−0.939−0.342i)T |
| 23 | 1+(0.642−0.766i)T |
| 29 | 1+(−0.906−0.422i)T |
| 31 | 1+(−0.5+0.866i)T |
| 37 | 1+(0.707−0.707i)T |
| 41 | 1+(−0.984+0.173i)T |
| 43 | 1+(−0.0871+0.996i)T |
| 47 | 1+(−0.939+0.342i)T |
| 53 | 1+(−0.996+0.0871i)T |
| 59 | 1+(0.906−0.422i)T |
| 61 | 1+(0.0871+0.996i)T |
| 67 | 1+(0.906+0.422i)T |
| 71 | 1+(−0.642−0.766i)T |
| 73 | 1+(0.984−0.173i)T |
| 79 | 1+(−0.173−0.984i)T |
| 83 | 1+(−0.965+0.258i)T |
| 89 | 1+(−0.984−0.173i)T |
| 97 | 1+(0.939+0.342i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.6380035381841322892318249940, −18.67427152182832607533868125064, −18.5019178306509919341302631914, −17.22872188301644225318922950633, −16.60337624062490897312213761205, −15.8017850004053233473667765739, −15.4499829230849990256512047365, −14.86764512048270784723303802787, −13.83848376416953035764069866528, −13.16486157763015675835410852455, −12.82347895855086023669737365300, −11.44897286338143188048039928084, −11.07402965872642565058940775701, −10.09170384900624538846950961987, −9.57485842782776687972321760078, −8.84337487750276903299870363370, −8.30332687073973085388665418268, −7.3188231028512103392808065706, −6.48068687390986083569835632046, −5.56748078180102959549783065945, −4.93717413590123041719144377461, −3.90657040609376391260210069468, −3.37940785760119398675230523866, −2.47431809291129631813172135536, −1.77324451619120258500749565421,
0.09109748157654037680746633044, 1.03472901413825345249774886256, 2.14378520063172413773354327673, 2.99177139043782995233028884687, 3.47228964348102975771657632685, 4.53908923951431350855158349050, 5.631134247300943120879429158749, 6.380571486409220582442058284697, 6.99341399603123539109405952238, 7.760498059338813660386387614065, 8.45273518101760963141178434067, 9.14560154023144385117342594062, 9.94965264446805034018646698644, 10.83637396936925052175874571162, 11.39022410600973710388305768447, 12.61207037393460487491071727911, 13.07861032516909432657452151632, 13.35188506449053686405549973471, 14.24278578005406840070901514834, 15.02942762273721085742556978987, 15.81103880647789847841099358309, 16.34829438917703151155906436730, 17.29728926656136835719320102626, 18.137520967154006965643836216012, 18.463512815212295892679727411840