Properties

Label 1-3040-3040.1309-r0-0-0
Degree 11
Conductor 30403040
Sign 0.388+0.921i-0.388 + 0.921i
Analytic cond. 14.117714.1177
Root an. cond. 14.117714.1177
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.573 − 0.819i)3-s + (−0.866 − 0.5i)7-s + (−0.342 − 0.939i)9-s + (−0.965 − 0.258i)11-s + (0.819 − 0.573i)13-s + (−0.939 − 0.342i)17-s + (−0.906 + 0.422i)21-s + (0.642 − 0.766i)23-s + (−0.965 − 0.258i)27-s + (−0.906 − 0.422i)29-s + (−0.5 + 0.866i)31-s + (−0.766 + 0.642i)33-s + (0.707 − 0.707i)37-s i·39-s + (−0.984 + 0.173i)41-s + ⋯
L(s)  = 1  + (0.573 − 0.819i)3-s + (−0.866 − 0.5i)7-s + (−0.342 − 0.939i)9-s + (−0.965 − 0.258i)11-s + (0.819 − 0.573i)13-s + (−0.939 − 0.342i)17-s + (−0.906 + 0.422i)21-s + (0.642 − 0.766i)23-s + (−0.965 − 0.258i)27-s + (−0.906 − 0.422i)29-s + (−0.5 + 0.866i)31-s + (−0.766 + 0.642i)33-s + (0.707 − 0.707i)37-s i·39-s + (−0.984 + 0.173i)41-s + ⋯

Functional equation

Λ(s)=(3040s/2ΓR(s)L(s)=((0.388+0.921i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.388 + 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3040s/2ΓR(s)L(s)=((0.388+0.921i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.388 + 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 30403040    =    255192^{5} \cdot 5 \cdot 19
Sign: 0.388+0.921i-0.388 + 0.921i
Analytic conductor: 14.117714.1177
Root analytic conductor: 14.117714.1177
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3040(1309,)\chi_{3040} (1309, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 3040, (0: ), 0.388+0.921i)(1,\ 3040,\ (0:\ ),\ -0.388 + 0.921i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.17639909650.2657253200i-0.1763990965 - 0.2657253200i
L(12)L(\frac12) \approx 0.17639909650.2657253200i-0.1763990965 - 0.2657253200i
L(1)L(1) \approx 0.78699196010.4174354884i0.7869919601 - 0.4174354884i
L(1)L(1) \approx 0.78699196010.4174354884i0.7869919601 - 0.4174354884i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.5730.819i)T 1 + (0.573 - 0.819i)T
7 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
11 1+(0.9650.258i)T 1 + (-0.965 - 0.258i)T
13 1+(0.8190.573i)T 1 + (0.819 - 0.573i)T
17 1+(0.9390.342i)T 1 + (-0.939 - 0.342i)T
23 1+(0.6420.766i)T 1 + (0.642 - 0.766i)T
29 1+(0.9060.422i)T 1 + (-0.906 - 0.422i)T
31 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
37 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
41 1+(0.984+0.173i)T 1 + (-0.984 + 0.173i)T
43 1+(0.0871+0.996i)T 1 + (-0.0871 + 0.996i)T
47 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
53 1+(0.996+0.0871i)T 1 + (-0.996 + 0.0871i)T
59 1+(0.9060.422i)T 1 + (0.906 - 0.422i)T
61 1+(0.0871+0.996i)T 1 + (0.0871 + 0.996i)T
67 1+(0.906+0.422i)T 1 + (0.906 + 0.422i)T
71 1+(0.6420.766i)T 1 + (-0.642 - 0.766i)T
73 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
79 1+(0.1730.984i)T 1 + (-0.173 - 0.984i)T
83 1+(0.965+0.258i)T 1 + (-0.965 + 0.258i)T
89 1+(0.9840.173i)T 1 + (-0.984 - 0.173i)T
97 1+(0.939+0.342i)T 1 + (0.939 + 0.342i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−19.6380035381841322892318249940, −18.67427152182832607533868125064, −18.5019178306509919341302631914, −17.22872188301644225318922950633, −16.60337624062490897312213761205, −15.8017850004053233473667765739, −15.4499829230849990256512047365, −14.86764512048270784723303802787, −13.83848376416953035764069866528, −13.16486157763015675835410852455, −12.82347895855086023669737365300, −11.44897286338143188048039928084, −11.07402965872642565058940775701, −10.09170384900624538846950961987, −9.57485842782776687972321760078, −8.84337487750276903299870363370, −8.30332687073973085388665418268, −7.3188231028512103392808065706, −6.48068687390986083569835632046, −5.56748078180102959549783065945, −4.93717413590123041719144377461, −3.90657040609376391260210069468, −3.37940785760119398675230523866, −2.47431809291129631813172135536, −1.77324451619120258500749565421, 0.09109748157654037680746633044, 1.03472901413825345249774886256, 2.14378520063172413773354327673, 2.99177139043782995233028884687, 3.47228964348102975771657632685, 4.53908923951431350855158349050, 5.631134247300943120879429158749, 6.380571486409220582442058284697, 6.99341399603123539109405952238, 7.760498059338813660386387614065, 8.45273518101760963141178434067, 9.14560154023144385117342594062, 9.94965264446805034018646698644, 10.83637396936925052175874571162, 11.39022410600973710388305768447, 12.61207037393460487491071727911, 13.07861032516909432657452151632, 13.35188506449053686405549973471, 14.24278578005406840070901514834, 15.02942762273721085742556978987, 15.81103880647789847841099358309, 16.34829438917703151155906436730, 17.29728926656136835719320102626, 18.137520967154006965643836216012, 18.463512815212295892679727411840

Graph of the ZZ-function along the critical line