Properties

Label 1-3040-3040.1333-r0-0-0
Degree 11
Conductor 30403040
Sign 0.712+0.701i0.712 + 0.701i
Analytic cond. 14.117714.1177
Root an. cond. 14.117714.1177
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.996 − 0.0871i)3-s + (−0.5 + 0.866i)7-s + (0.984 + 0.173i)9-s + (0.258 − 0.965i)11-s + (0.0871 + 0.996i)13-s + (−0.984 + 0.173i)17-s + (0.573 − 0.819i)21-s + (−0.939 + 0.342i)23-s + (−0.965 − 0.258i)27-s + (−0.573 − 0.819i)29-s + (0.5 − 0.866i)31-s + (−0.342 + 0.939i)33-s + (0.707 − 0.707i)37-s i·39-s + (0.642 + 0.766i)41-s + ⋯
L(s)  = 1  + (−0.996 − 0.0871i)3-s + (−0.5 + 0.866i)7-s + (0.984 + 0.173i)9-s + (0.258 − 0.965i)11-s + (0.0871 + 0.996i)13-s + (−0.984 + 0.173i)17-s + (0.573 − 0.819i)21-s + (−0.939 + 0.342i)23-s + (−0.965 − 0.258i)27-s + (−0.573 − 0.819i)29-s + (0.5 − 0.866i)31-s + (−0.342 + 0.939i)33-s + (0.707 − 0.707i)37-s i·39-s + (0.642 + 0.766i)41-s + ⋯

Functional equation

Λ(s)=(3040s/2ΓR(s)L(s)=((0.712+0.701i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.712 + 0.701i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3040s/2ΓR(s)L(s)=((0.712+0.701i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3040 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.712 + 0.701i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 30403040    =    255192^{5} \cdot 5 \cdot 19
Sign: 0.712+0.701i0.712 + 0.701i
Analytic conductor: 14.117714.1177
Root analytic conductor: 14.117714.1177
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3040(1333,)\chi_{3040} (1333, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 3040, (0: ), 0.712+0.701i)(1,\ 3040,\ (0:\ ),\ 0.712 + 0.701i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.8019078232+0.3286405096i0.8019078232 + 0.3286405096i
L(12)L(\frac12) \approx 0.8019078232+0.3286405096i0.8019078232 + 0.3286405096i
L(1)L(1) \approx 0.7172426493+0.06546141251i0.7172426493 + 0.06546141251i
L(1)L(1) \approx 0.7172426493+0.06546141251i0.7172426493 + 0.06546141251i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
19 1 1
good3 1+(0.9960.0871i)T 1 + (-0.996 - 0.0871i)T
7 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
11 1+(0.2580.965i)T 1 + (0.258 - 0.965i)T
13 1+(0.0871+0.996i)T 1 + (0.0871 + 0.996i)T
17 1+(0.984+0.173i)T 1 + (-0.984 + 0.173i)T
23 1+(0.939+0.342i)T 1 + (-0.939 + 0.342i)T
29 1+(0.5730.819i)T 1 + (-0.573 - 0.819i)T
31 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
37 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
41 1+(0.642+0.766i)T 1 + (0.642 + 0.766i)T
43 1+(0.9060.422i)T 1 + (0.906 - 0.422i)T
47 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
53 1+(0.422+0.906i)T 1 + (-0.422 + 0.906i)T
59 1+(0.5730.819i)T 1 + (0.573 - 0.819i)T
61 1+(0.422+0.906i)T 1 + (-0.422 + 0.906i)T
67 1+(0.8190.573i)T 1 + (0.819 - 0.573i)T
71 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
73 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
79 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
83 1+(0.9650.258i)T 1 + (0.965 - 0.258i)T
89 1+(0.642+0.766i)T 1 + (-0.642 + 0.766i)T
97 1+(0.984+0.173i)T 1 + (-0.984 + 0.173i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.83916332115951005300655970721, −17.94103824169205768708674528624, −17.6132057018519221645643541706, −16.979675349147382090344101660865, −16.10920623162121035037901177429, −15.71542127817008691607980837536, −14.874532597440910967570613223048, −13.97991761051898578454453854467, −13.088548387054800013309896837432, −12.64147244047144514018218052365, −11.95654812523023674863065491763, −10.99413670031800602495847390725, −10.50914626931918617768571775595, −9.886005472864625543680795294622, −9.170073443147638476070735243683, −7.993288035664148617412898360182, −7.2132271307318615936538943870, −6.66963638343243984539492457985, −5.94013317955436347290279889569, −5.02210913570222184850454128163, −4.327012617531709775018154421762, −3.6837091140633050336611438145, −2.510556906867547447288985823047, −1.41553592686261071997502729168, −0.47896310523551733354843914394, 0.67981862214822457512872837287, 1.88715876917547867956759731631, 2.59611356304946708249977860183, 3.93893248730855583264314851439, 4.35017064658514129227157889598, 5.6007827286828829819371099108, 6.02197428042831598763652287167, 6.54667177250278443082353008210, 7.505650385903674646518444976612, 8.4247856639929222823158652658, 9.31689260334261236961286683779, 9.726628228977510725069757315770, 10.94214817643980718614810445815, 11.31787494934309464149882923313, 11.983298625493657518251815486831, 12.671640593249457708185759534345, 13.443199022173632809047216153907, 14.06705672769856818068863857999, 15.20327138893688017807460470710, 15.75782140566339180628353946169, 16.37567618466650380020829588949, 16.95493720821749687304578977794, 17.76072904701519516997559263135, 18.42741811932857958808025139254, 19.07525652795466528986282706547

Graph of the ZZ-function along the critical line