L(s) = 1 | + (−0.996 − 0.0871i)3-s + (−0.5 + 0.866i)7-s + (0.984 + 0.173i)9-s + (0.258 − 0.965i)11-s + (0.0871 + 0.996i)13-s + (−0.984 + 0.173i)17-s + (0.573 − 0.819i)21-s + (−0.939 + 0.342i)23-s + (−0.965 − 0.258i)27-s + (−0.573 − 0.819i)29-s + (0.5 − 0.866i)31-s + (−0.342 + 0.939i)33-s + (0.707 − 0.707i)37-s − i·39-s + (0.642 + 0.766i)41-s + ⋯ |
L(s) = 1 | + (−0.996 − 0.0871i)3-s + (−0.5 + 0.866i)7-s + (0.984 + 0.173i)9-s + (0.258 − 0.965i)11-s + (0.0871 + 0.996i)13-s + (−0.984 + 0.173i)17-s + (0.573 − 0.819i)21-s + (−0.939 + 0.342i)23-s + (−0.965 − 0.258i)27-s + (−0.573 − 0.819i)29-s + (0.5 − 0.866i)31-s + (−0.342 + 0.939i)33-s + (0.707 − 0.707i)37-s − i·39-s + (0.642 + 0.766i)41-s + ⋯ |
Λ(s)=(=(3040s/2ΓR(s)L(s)(0.712+0.701i)Λ(1−s)
Λ(s)=(=(3040s/2ΓR(s)L(s)(0.712+0.701i)Λ(1−s)
Degree: |
1 |
Conductor: |
3040
= 25⋅5⋅19
|
Sign: |
0.712+0.701i
|
Analytic conductor: |
14.1177 |
Root analytic conductor: |
14.1177 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3040(1333,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3040, (0: ), 0.712+0.701i)
|
Particular Values
L(21) |
≈ |
0.8019078232+0.3286405096i |
L(21) |
≈ |
0.8019078232+0.3286405096i |
L(1) |
≈ |
0.7172426493+0.06546141251i |
L(1) |
≈ |
0.7172426493+0.06546141251i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1 |
good | 3 | 1+(−0.996−0.0871i)T |
| 7 | 1+(−0.5+0.866i)T |
| 11 | 1+(0.258−0.965i)T |
| 13 | 1+(0.0871+0.996i)T |
| 17 | 1+(−0.984+0.173i)T |
| 23 | 1+(−0.939+0.342i)T |
| 29 | 1+(−0.573−0.819i)T |
| 31 | 1+(0.5−0.866i)T |
| 37 | 1+(0.707−0.707i)T |
| 41 | 1+(0.642+0.766i)T |
| 43 | 1+(0.906−0.422i)T |
| 47 | 1+(0.984+0.173i)T |
| 53 | 1+(−0.422+0.906i)T |
| 59 | 1+(0.573−0.819i)T |
| 61 | 1+(−0.422+0.906i)T |
| 67 | 1+(0.819−0.573i)T |
| 71 | 1+(−0.342+0.939i)T |
| 73 | 1+(0.766−0.642i)T |
| 79 | 1+(−0.766+0.642i)T |
| 83 | 1+(0.965−0.258i)T |
| 89 | 1+(−0.642+0.766i)T |
| 97 | 1+(−0.984+0.173i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.83916332115951005300655970721, −17.94103824169205768708674528624, −17.6132057018519221645643541706, −16.979675349147382090344101660865, −16.10920623162121035037901177429, −15.71542127817008691607980837536, −14.874532597440910967570613223048, −13.97991761051898578454453854467, −13.088548387054800013309896837432, −12.64147244047144514018218052365, −11.95654812523023674863065491763, −10.99413670031800602495847390725, −10.50914626931918617768571775595, −9.886005472864625543680795294622, −9.170073443147638476070735243683, −7.993288035664148617412898360182, −7.2132271307318615936538943870, −6.66963638343243984539492457985, −5.94013317955436347290279889569, −5.02210913570222184850454128163, −4.327012617531709775018154421762, −3.6837091140633050336611438145, −2.510556906867547447288985823047, −1.41553592686261071997502729168, −0.47896310523551733354843914394,
0.67981862214822457512872837287, 1.88715876917547867956759731631, 2.59611356304946708249977860183, 3.93893248730855583264314851439, 4.35017064658514129227157889598, 5.6007827286828829819371099108, 6.02197428042831598763652287167, 6.54667177250278443082353008210, 7.505650385903674646518444976612, 8.4247856639929222823158652658, 9.31689260334261236961286683779, 9.726628228977510725069757315770, 10.94214817643980718614810445815, 11.31787494934309464149882923313, 11.983298625493657518251815486831, 12.671640593249457708185759534345, 13.443199022173632809047216153907, 14.06705672769856818068863857999, 15.20327138893688017807460470710, 15.75782140566339180628353946169, 16.37567618466650380020829588949, 16.95493720821749687304578977794, 17.76072904701519516997559263135, 18.42741811932857958808025139254, 19.07525652795466528986282706547